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Abstract 

A new compact model for a-Si TFTS is proposed. The model is physically based 
as the relation between the surface and the  quasi-Fermi potentials is correctly 
accounbed for, and therefore implicitly accounts for both linear and saturation , 

operating condi'tions. Among other consequences, the  explicit definition of the 
threshold and saturation voltages as input parameters is not needed. 

1. Introduction 

Amorphous Silicon (a-Si) devices like TFTS (Thin-Film Transistors) have met an in- 
creasingly higher interest in the last years. In particular, their use in circuit design 
makes the availability of analytical models particularly attractive. The development 
of such models is complicated by the presence of a high concentration of trap states in 
the energy gap of a-Si, which makes it necessary to account for the trap states in every 
operating region. The energy distribution of the gap states of a-Si, both acceptor-like 
(sa) and donor-like ( g d ) ,  is accurately modeled by the superposition of two exponen- 
tial functions, accounting for band-tail states as well as deep states. In the typical 
operating conditions of n-channel TFTs,  the Fermi level is closer to the edge Ec of 
the conduction band, hence it is placed well within the distribution of acceptor-like 
states. As a consequence, the influence of the latter on the electric potential and 
therefore on the drain current becomes dominant. In contrast, the donor-like states, 
located in the lower half of the gap, are essentially neutral. Dual considerations hold 
for pchannel transistors. The distribution ga reads [l] 

while gd is obtained from (1) with a t d ,  E - Ec t Ev - E .  In this paper, the 
analytical theory originally devised for crystalline-silicon MOSFETs [a] has carefully 
been reworked in order to incorporate the effects of the trapped charge. In the next 
section the theory is outlined along with the approximations to be introduced, which 
are discussed with the aid of numerical simulations. The theory is presented for 
n-channel devices, in which the source and drain diffusions are n+ doped and the 
gate bias VC is such as to create an electron channel. The approach overcomes some 
limitations of the currently-used analytical models for a-Si devices; its features are 
compared with experiments in section 3. 
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2. Theory and Implementation 

The charge density of a-Si is expressed by e = q ( p  + pd - n - n, + N )  , where na (pd) 
is the concentration of electrons (holes) trapped in the acceptor (donor) states: 

in which the integrals extend over the gap. 
acceptor-state occupation probability reads 

In a non-equilibrium condition, the 

pa = {exp [ ( E  - EFO - q'p + q [a ) / ( kBTL) ]  + I}-' 7 (3) 

where 'p is the electrostatic potential (assumed to vanish in the bulk), TL the lattice 
temperature, and E F O  - qEa the quasi-Fermi level of the trapped electrons. As the ma- 
terial is typically undoped, and the trap density large, the non-degenerate expressions 
for the free carriers hold; in particular, 

with EFO - qtn the quasi-Fermi level of the conductions electrons. Similar expressions 
hold for P d  and p .  The value of E F ~  - Ec is determined by imposing the bulk- 
neutrality condition p + pd = n + n, in equiljbrium. The integral providing n, can be 
evaluated by splitting the integration interval at EFO+q'p-qta and approximating the 
occupation probability following 131; this yields an analytical expression for na(v,  ta) . 
To proceed, let z be the coordinate normal to the channel and E the component of the 
electric field along z (for reference, a schematic cross-section of an inverted-staggered 
a-Si TFT is reported in Fig. 1). As the channel is formed by electrons, it is E > 0; 
in addition, the hole concentrations in the charge-density expression are negligible 
in the channel region, whence e = -q  [n(cp, tn) + na('p, E a ) ] .  Here tn ,  6, depend at 
most on the coordinate y along the channel; as a consequence, Poisson's equation can 
be integrated analytically in z using the customary gradual-channel-approximation 
theory: 

whence I = E ( ' p ,  tn, E a ) .  Letting 'ps be the surface potential at y , the mobile charge 
per unit area is 

It is worth noting that (6) departs from the customary expression Qz = Q,, - Q b  of 
the monocrystalline doped silicon, in which Q b  0: 6. 
From the solution of ( 5 )  one finds that 1' is a linear combination of three exponentials, 
whose exponents are inversely proportional to T L ,  Tat, and T a d ,  respectively. It is 
found that each term of the combination is dominant over the others in a particular 
subinterval of [0, ys]  . Thanks to this, the last integral in (6) can be carried out by, 
first, splitting the integration domain, and then by neglecting in each subintegral the 
less relevant terms of the combination. This procedure has also the advantage that 
each term can be calculated analytically. A comparison with the exact calculation of 
(6), shown in Fig. 2, indicates that the approximation is satisfactory. It is also worth 
mentioning that no assumption is made here about the shape of the inverted layer in 
the z direction, hence the theory which is being worked out here does not lead to a 
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charge-sheet model. 
From the procedure depicted above it is also found that the functional dependence of 
Q; on the potentials is of the form Q; = Qz(cps - tn,(ps - t,) . A similar calculation 
yields an analytical expression for the trapped charge per unit area, Qa(cps, &, 5,) = 
-qJr n, dx , such that Q, = Q,(cps - tn, cps - t a ) .  In turn, the total semiconductor 
charge per unit area is'given by Q,, = -Cox (VG-VFB - c p s ) ,  where Cox is the insulator 
capacitance per unit area and VFB the flat-band voltage. Combining the above with 

Fig. 3 shows, by way of example, the result of a fully-numerical calculation of cps , tn, 
and f a ,  for a drain voltage VD corresponding to the saturation regime, in an n-channel 
TFT fabricated at the CNR-IESS Laboratory. One notices that = E n ,  so that the 
balance relation Q,, = Q; + Q, actually yields tn = tn(cpS) , whence Q; = Q;(ys  - En) . 
In conclusion, the mobile charge per unit area Q; is given by an analytical expression 
of the argument x = ps - tn. Inverting tn = tn(cps) and using the above leads to  
x = x(tn) ,  to be used in the definition of the drain current 

Qsc = Qz + Qa yields ~s = (~s([n, 5,) 
. 

source 
n+ 

with pe the average over the channel of the electron mobility pn . The definition of x 
also yields Q,, = -Cox ( VG - VFB - x - tn) , whence dtn/dX = dQ,,/d(CoxX) - 1 . 
Finally, from Q,, = Q; + Q, = Qsc(x) it follows 
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3. Results and Conclusions 

Eq. (8) constitutes the last step in the calculation of the channel current, and the 
only one which has to  be carried out numerically. In fact, the approximations to  
be introduced in the integrand and in the integration limits x(S), ~ ( 0 )  in order to 
make the calculation analytical, are too heavy to be of practical use. As an application 
example, Fig. 4 shows the drain current vs. the drain voltage of an a-Si TFT whose 
structure is reported in [3]. The symbols represent the experimental data while the 
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continuous lines are the drain current calculated by means of the new model. The 
transfer characteristics are not reported as the experimental data were not available at 
the moment of preparing this manuscript; however, comparis,ons with fully-numerical 
calculations show that the transfer characteristics are correctly reproduced in both 
the above- and below-threshold regimes. 
To conclude, in this paper a new analytical model for a-Si TFTS has been presented. 
The model is physically based as the relation between the surface and the quasi-Fermi 
potentials is correctly accounted for, and therefore implicitly accounts for both linear 
and saturation operating conditions. Furthermore, it does not require the explicit 
definition of the threshold and saturation voltages as input parameters, which are 
rather ambiguously determined in this kind of devices. 
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