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Abstract 

We present calculations of the linear-response conductance of a SiGe based single- 
electron transistor (SET). The tunneling rates through the source- and lead barriers are 
calculated using Bardeen's transfer Hamiltonian formalism [4]. The tunneling matrix 
elements are calculated for transitions between the OD states in the quantum dot and 
the lowest subband in the 1D constriction. We compare the results for the conductance 
peaks with those from calculations with a constant rate, i. e. where the shape of the 
peaks is only due to energetic arguments. 

Introduction 
Single-electron tunneling in semiconductor nanodevices such as single-electron transistors is 
an interesting subject for application-oriented research towards new device principles. Even 

Figure 1: Top view of the metallic gates of the SET. 

though an ever increasing number of SET structures showing clear signs of single-electron 
tunneling combined with Coulomb-blockade (CB) are now available, the interpretation of 
peak spacings and peak heights of the CB peaks is still controversial. Main issues concerning 
for instance the statistics of the peak spacing still remain unresolved (for recent work see [l] 
and [2]). Most of the analysis of experimental data is carried out using the so-called orthodox 
theory of CB and its extensions towards semiconductor structures, the constant interaction 
model (CI) for the dot states. The basic assumptions of this theory allow to predict the main 
trends in the line shape and the peak height as well as the spacing of the CB peaks within 
certain regimes which are given by the range of the dot level spacing, A€, and the thermal 
energy, kgT 131. The basis of this analysis is an equation for the linear-response current of a 
quantum dot connected to a reservoir via two tunneling barriers 
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F({n ,} ,  N )  is the total free energy of the system with N electrons in the quantum dot and 
the occupation configuration {nz}, n = 0,1, where EF is the Fermi energy and Peq({nZ}) is 
the Gibbs distribution function of the electron population of a quantum dot in equilibrium 
with the reservoirs. rd and rS are the tunneling rates for the drain- and source-side barrier. 
The tunneling rates are often assumed to be constant or just to depend on the width of the 
barrier. Such a treatment is only able to reveal the effect of the free energies on both line 
shape and peak hight of the conductance peaks. In this paper we present calculations of the 
tunneling rates using Bardeen’s transfer Hamiltonian formalism [4]. The tunneling rates are 
inserted into Eq. (1) and the effects of the tunneling rates on the heights of the CB peaks 
are investigated for a Si test structure. 

2 Bardeen’s transfer Hamiltonian formalism 
We straightforwardly apply the transfer Hamiltonian formalism given in [4] and [5] t o  a 
reservoir/dot system, where the dot is separated from the reservoir by two narrow quasi-1D 
channels (leads). By applying a voltage to an electrostatic gate above the channel we create 
a narrow constriction (Fig. 2). We assume that the width of the constriction in its center 
allows only one transverse state below the Fermi level [6] .  Therefore, the constriction can be 
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Figure 2: (a)  Schematic view at the constriction. 

considered a quantum-point contact separating the dot and the reservoir. The wave function 
of a state penetrating the constriction (but still outside the barrier) is one--dimensional 

assuming the quasi-1D channel to extend along the x-direction. +o(x; y, z )  is the wave func- 
tion for the transverse motion and k denotes the associated wavevector. Within the barrier 
the wavefunction is treated in the WKB approximation 

~ ( x ,  9, z )  = $o(x; y, z)ew(z) ,  w(x> = lz ~ 1 x ~ ~ ( x ~ ) ,  (3) 

with the WKB wavevector given by (h2/2m;>~’(x) =‘EO - V ( z ) .  EO is the energy of 
the transverse mode, V the barrier potential, a is the classical turning point in the lead 
and W ( x )  = exp[w(z)] is called the barrier-penetration factor. With these assumptions the 
matrix element for the transition from the lowest transverse state 40 in the constriction to 
the kth dot state $k can be approximated by 

The tunneling rate for this transition is then given as 

172 



We calculate the eigenvalue spectrum of the quantum dot self-consistently by solving a non- 
linear Schrodinger/Poisson equation on a 3D mesh comprising the dot area as well as the 
barrier regions [7]. The wavefunction for the transverse mode 40 in the constriction is ob- 
tained as the solution of the Schrodinger/Poisson equation solving the Schrodinger equation 
in slices along the 1D-channel in the leads. The wavefunctions are then used to evaluate 
the matrix element, Eq. (4), and the tunneling rate, Eq. (5). Finally, the conductance is 
obtained from Eq. (1). 

3 Results 
Fig. 3 shows the dependence of the conductance peaks on the tunneling rates. In the upper 
panel, the tunneling rates in the conductance formula Eq. (1) were kept at  a constant value 
of r k  = IS-' for all k .  In the lower panel, the tunneling rates were explicitly calculated 
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Figure 3: conductance peaks for  a constant tunneling rate 
r k  = Is-' for  all dot levels. Lower panel: conductance peaks calculated with 
tunneling rates according t o  Eqs. (4 ,  5).  Dashed line: charging of the quantum 
dot. 

Upper panel: 

using the formalism described above. We see a strong suppression of the first up to  the fifth 
peak. The inset shows one particular conductance peak from the lower panel in comparison 
to the corresponding peak from the upper panel, however, scaled to the same peak height. 
It can be seen that even though the peak height is different, the shape of the peak remains 
the same. Therefore it can be concluded that the principal shape of the conductance peak 
is not altered by the inclusion of realistic tunneling rates. i.e. the shape of the conductance 
peaks is soleley determined by the temperature dependent distribution of the electrons in the 
quantum dot and not by the energetic barrier. 

4 Summary 
We showed that the inclusion of realistic tunneling rates within the linear-response conduc- 
tance formula of Beenakker [3] severely alters the results for the conductance characteristics 
of a single-electron transistor. While the line shape scaled to the same peak hight remains the 
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Figure 4: The marked conductance peak f rom the lower panel in Fig. 3 overlaid 
b y  the corresponding peak f rom the upper panel. 

same, some of the peaks, especially at the lower end of the spectrum get almost completely 
suppressed. This effect is due to  the low energy of those eigenvalues which contribute to  the 
tunneling rate (at low temperatures this is only one level), and therefore the much wider 
barrier these electrons have to  traverse in the tunneling process. This result is in qualitative 
agreement with many experimental findings (see for instance [8]). 
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