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Abstract: 'Improvements in the Spherical Harmonic (SH) method for solving Boltzmann Transport Equa- 
tion (BTE) are presented. The simulation results provide the same physical detail as analytical band Monte 
Carlo (MC) calculations, and are obtained approximately a thousand times faster. A new physical model 
for surface scattering has also been developed. As a result, the SHBTE model achieves calibration for a 
complete process of I-V characteristics and substrate current consistently for the first time. 

1. Introduction 
The Spherical Harmonic Boltzmann Transport Equation (SHBTE) method achieves device simulation by 

direct self-consistent solution to the Boltzmann transport equation (BTE) and the Poisson equation[l,2]. It 
gives the distribution function for the device approximately one thousand times faster than the analytical 
band Mone Carlo (MC) method and without statistical noise. It does not suffer from the same assumptions 
as the drift-diffusion (DD) and hydrodynamic (HD) models. In response to these attributes, industry is 
beginning to employ the method. However, questions remain concerning truncation error, agreement with 
Monte Carlo simulation, the ability of the SHBTE to capture the electron dynamics under highly rapid 
variations of electric field, and its applicability to process and device calibration.' 

In this work, we demonstrate that the SHBTE model agrees with MC for the distribution function. We 
also improve the model to account for truncation error and to ensure capture of electron dynamics for fields 
varying on dimensions as small as O.Olpm. We also improved the surface scattering model to help facilitate 
process calibration of both I-V characteristics and substrate current with one self-consistent SHBTE model. 
We obtain agreement with experiment for substrate current without using any fitting parameters! (This is in 
contrast with DD and HD models, which do not calculate the distribution function thereby forcing substrate 
current to be calculated using ad-hoc models.) 

2. Expansion Truncation and Nanoscale Electron Dynamics: 
We start our discussion with Boltzmann Transport Equation: 

where q5(F',) is the potential; f ( r ' , i )  is the electron distribution function; E is the energy; i is the electron 
wave-vector; r' is the position vector; ti is Planck's co_nstant. With the SH method the distribution function 
is expressed as a spherical harmonic expansion f(?, I C )  = CL=-, flm(?, E ) Y , m ( 8 ,  4 ) .  The expansion is 
then substituted into the Boltzmann equation. With Fermi's golden rule and deformation potential theory, 
the collision term can be expressed analytically. Mathematical manipulation transforms the BTE into a 
system of equations for the coefficients coupled to nearest neighbors[l]. The equations for the first two 
coefficients in 1-D are given below. 

' 

The zero equation: 

The first order eauation: 

. .  
71 

(3) 

1 where H = E - q#(Tf); = & + - + &; O(F2) represents the truncation effect contributed from higher 
order terms. In this paper we benchmark SHBTE against MC for three different devices: one 0.075pm base 
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BJT; and two N+NN+ structures with N region lengths of 0.06pm and 0.15pm respectively. In Fig. 1 we 
compare the SHBTE and MC simulations for the two N+NN+ structures. In Fig. la we show the electric 
fields vary by more than 3OOkV/cm over 0.02pm. In Fig. l b  we show the resulting distribution function 
agrees with MC calculations, and in Fig IC we show that the velocity calculated by the SHBTE method 
agrees with MC calculations. (No fitting parameters are used, the MC and SHBTE have identical inputs.) 
In Fig 2a, we show the doping profile of the BJT, and resulting electric field with an applied potential of 
VBE = 0.85V and VCB = 3V. (Here the electric field also varies by as much as 300kV/cm just over a 
distance of 0.02pm.) Using the the same physical inputs, Fig. 2b shows agreement between the SH and MC 
results for the energy distribution functions. Agreement between the SHBTE and MC results in Figs. l b  
and 2b indicates that the energy distribution function, which is the zero order term in the SH expansion, 
is not visibly affected by truncation for active dimensions as little as 0.06pm. The only discrepancy we see 
is in Fig. 2c, which is a small disagreement in the velocity overshoot region of the BJT. We attribute this 
small disagreement to a minor truncation error in the first order term of the SH expansion. We helped. 
to verify this by adding the second order term to  our solution, and found this modification yielded better 
agreement. We found that the inclusion of a higher order term in the SH expansion has the effect of reducing 
the coefficients of the odd numbered spherical harmonics for low values of energy when the electric field is 
varying very rapidly in space. We find that compensation for the truncation error can be implemented by 
mimicking the inclusion of higher order SH terms by modifying the scattering rate in Eq(3) to be larger for 
lower energies when the field is rapidly varying. The modified T can be defined as T ( E e f f )  = T ( E  + 
where E o f f s e t  is given by 

where EO = CEL,,. A = 0.8, B = 0.2, C = 2.66e-12 
EmaZ=maximum electric field in device. E&,,=maximum of first derivative of electric field in the device. 
The A, B, C values are calibrated by MC for a variety structures and biases. With this compensation, 
we find that the SH method captures deep submicron electron dynamics without sacrificing computational 
efficiency. Figs. IC and 2c show virtually perfect agreement between the corrected SH (solid-line) and MC 
for the deep submicron BJT and N+NNf structures. 
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Fig. l a  Fig. l b  Fig. IC 
Fig. l a :  Electric fields for two different N+NNf structures. The short diode has N region length of 0.06pm, 
and the other 0.15pm. Fig. lb:  Distribution function for short diode at various locations showing agreement 
with Monte Carlo simulation. Fig. IC: Average velocity for both the long and short diodes, with and without 
scattering modification. Agreement with MC is obtained for all cases. 

3. MOSFET Process Calibration: 
With MC corroboration established, wemow apply the model to real 2-D MOSFET simulation where we 

use the SHBTE to calibrate a 0.25 micron process for the first time. 2-D self-consistent simulation requires 
we add the Poisson and Hole Current Continuity equations to complete the SHBTE model. 

(5) 1 
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Fig. 2a Fig. 2b Fig. 2c 
Fig. 2a: Doping profile and electric field in 0.075pm base BJT. Fig. 2b: Agreement between SG and MC 
for distribution function at  regular locations in BJT. Fig. 2c: Average velocity with and without correction 
for truncation error in BJT. . 

vs . [ppP(qvF$(q + p p K v F P ( a  = R(4,  %P) - G,,(Phi, %PI ( 6 )  

wherep(3 is the hole concentration; NA(F) and ND(F) is the doping concentration for acceptors and donors; 
E ,  is the silicon dielectric constant; pp is the hole mobility; R(n,p) is the net SHR hole recombination rate; 
G,,(n,p) is the hole generation rate due to impact ionization. 

We find that the SHBTE model is already fairly well suited for process calibration. However, it can be 
improved by revising our surface scattering rate. In previous work, the surface scattering rate was derived 
while accounting for surface acoustic and surface roughness scattering, with the assumption that only one 
quantum subband in the MOSFET-inversion layer was occupied. This assumed a 2-D density of states which 
gave rise to the energy independent form for surface scattering Sznv(El ) ,  that is explicitly dependent on the 
electric field perpendicular to the interface [l]. 

However, as device dimensions continue to shrink, higher order subbands become occupied as well, so the 
density of states takes on some 3-D characteristics. This will give rise to the scattering rate having an energy 
dependence. To account for the correction incorporating 3-D density of states, we introduce the following 
relationship: 

where S,, ,(E~,E) is the scattering rate corrected for higher subbands, P(E1) is an energy independent 
mapping function that depends on the perpendicular electric field, and g(c) is the 3-D density of states. 
Thus, as long as we know /? (El ) ,  the energy and electric field dependent surface scattering rate S,,,(El, E) 
can be obtained immediately. To obtain / ~ ( E I ) ,  we map the 2-D scattering rate SanW(El)  to the energy 
dependent one Sznv(El ,  E ) .  This is achieved by assuming that S,,,(El) is the average of Sznv(El ,  E ) .  

(7) s,,, (El , E )  = P(EI)9(E) 

1 [P(Edg(&)I F $ ( E ) ~ ( E ) ~ E  
SWw(E1) = / Foo(E)9(4d& 

where F; is the solution from Eq.(2); 
@ ( E l )  can be obtained by rearranging (8), and factoring it out of the integral: 

We solve the above equation numerically for /?(EL) at each mesh point 'in the inversion layer. We then 
evaluate the product o ( E l ) g ( ~ )  to obtain Sinv(El,  E) ,  the scattering rate in the inversion layer that depends 
both on energy as well as perpendicular electric field. 
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Finally, in order to more accurately calibrate the entire process, especially for the shortest device, we 
lump contact and external measurement resistance into the effective resistance Rext on the drain side. Using 
an iterative method, we determined Rest for the process, and thereby the actual boundary condition on the 
drain can be obtained: V d e f f  = Vd,, - Id x ReZt.  Using standard values for bulk phonon scattering, and 
taking the surface scattering rate as adjustable, we calibrate a NMOS process with three different effective 
gate lengths 0.88 p m, 0.35 pm and 0.15 pm. Fig. 3 shows all calibrated IV characteristics of these three 
different NMOS devices with measurement data. All the error of simulation data is within 5%. 

Since the SH method gives the distribution function, it is ideal for calculating substrate current. We 
calculate the impact ionization rate with the random k model[3]. We then include impact ionization in the 
BTE's collision integral as described in [ l ] .  Taking the electron and hole generation rates to be equal, gives 
rise to substrate current composed of holes. Our resulting substrate current simulation values, which are 
shown in Figs. 4a, 4b, and 4c, agree with experiment for all three devices without the need for any fitting 
parameters! 
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Fig. 3a Fig 3b Fig. 3c. 
Fig. 3: Agreement with experiment for I-V characteristics of 0 . 8 8 ~  m(3a), 0.35pm (3b) and 0.15pm (3c), 
effective channel length devices from a single process. 
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Fig. 4a 
Fig. 4: Agreement with experiment 
0.15pm (4c), effective channel length 
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Fig. 4b Fig. 4c 
for substrate current characteristics of 0.88pm (4a), 0.35pm (4b) 
devices from a single process. No fitting parameters were used! 

and 

1. W. Liang, N. Goldsman, I. Mayergoyz, P. Oldiges, IEEE Trans. on Elec. Dev., vol. 44, pp. 257-276, 
1997. 
2. M.C. Vecchi, J. Mohring, M. Rudan, IEEE Trans. on CAD ICAS, vol. 16, pp. 353, 1997 
3. Y.-J. Wu, N. Goldsman, Journal of Applied Physics, vol. 78, no. 8, 1995. 

170 


