
7-1 5

Fast Statistical-based Interconnect Modeling Using Automatic
differentiation’

Lucas Roh2

Math and Computer Science Division, Argonne National Laboratory, Argonne, IL USA

Christian Bischof3
Institute for Scientific Computing, Technical University Aachen, Aachen, Germany

Norman Chang4, Ken Lee, Valery Kanevsky, 0. Sam Nakagawa, and
Soo-Young Oh

Hewlett Packard Laboratory, 3500 Deer Creek Rd. Palo Alto, CA USA

Abstract
Automatic differentiation is a technique for computing derivatives accurately and eficiently with minimal
human effort. We employed this technique to generate derivative information of FCAP2/3 programs that
simulate the parasitic effects of interconnects. This derivative information is used in the statistical
modeling of worst-case interconnect delays and on-chip crosstalks. The ADIC (Automatic Differentiation
in C) tool generated new versions of FCAP2 and FCAP3 programs that compute both the original results
and the derivative information. We report on the use of automatic differentiation and divided difference
approaches for computing derivatives for FCAP3 programs. The results show that ADIC-generated code
computes derivatives more accurately, more robustly, and faster than the divided difference approach.

1. Introduction
The parasitic effects of interconnects become very important as the geometry of VLSI/ULSI chips shrinks,
and thus interconnect delay can easily be more than 70% of the total delay. Because of process variations,
the critical path delay varies with the set of interconnects and devices. Thus, we need accurate models of
the sensitivities of the delay with respect to these interconnects and devices in order to determine the worst-
case behaviors. For this purpose, the modeling of statistically based worst-case (i.e., 3-sigma) delays is
more desirable than determining the traditional skew-corner worst cases. Since a chip has millions of
interconnects, a fast method is necessary to generate statistical-based worst case modeling of interconnects
and devices.

We have developed a methodology [2] for obtaining 3-sigma R (resistance), C (capacitance), crosstalk, and
delay given variations in interconnect-related process parameters. This methodology uses FCAP2 and
FCAP3 [3] (Fast Capacitance Extraction 2-D and 3-D simulators, respectively) that have been developed at
Hewlett Packard Laboratory to study parasitic electrical effects of interconnects and devices. Using this
methodology for a long critical net analysis on a 0.35 um process, we realized a more than 70%
improvement in 3-delay delay estimation compared with the traditional skewicorner worst case delay. This

’ This work was supported by the.Mathematical, Information, and Computational Sciences Division Subprogram of the
Department of Energy, under contract W-31-109-Eng-38, and by Technical Service Agreement No. 85650 with the
Hewlett-Packard Corporation.

ro ti (+i?nics.an~. oov

b i s c l i o f ~ s c . r w t h - a a c l i ~ n , ~ ~
nchanp@hr?labs.hp.com

159

mailto:nchanp@hr?labs.hp.com

methodology relies on accurate derivatives of the FCAP-generated results. A single run of on-chip
statistical modeling takes on the order of a week on a fast workstation, and most of this time is spent in
computing the derivatives.

Previously,. our methodology obtained derivatives by estimating them by using divided difference schemes.
The advantage of this traditional approach is that the function (in this case, the simulator) can be treated as
a black box. The disadvantage is that the time required to compute derivatives grows linearly with the
number of independent variables, and the accuracy of derivatives may be compromised severely as a result
of truncation and cancellation errors.

Recently, the automatic differentiation technique has been gaining popularity due to its capability to
produce accurate derivative codes in an automated fashion and for its' generality. An automatic
differentiation tool takes a code comprising a function, such as FCAP2FCAP3, and generates a derivative
code that evaluates the derivative of the function with respect to the specified independent variables. No
limits are imposed on the length or the complexity of the program. Hence, general techniques that rely on
the output of semiconductor computer simulation models, such as optimal design and sensitivity or

I

, reliability analysis can all benefit from using automatic differentiation.

2. Automatic Differentiation Using ADIC

In this section, we briefly review automatic differentiation techniques and describe our tool that implements
them. Every function, no matter how complicated, is executed on a computer as a (potentially very long)
sequence of elementary operations (addition, multiplication, etc.) and elementary functions (sine, cosine,
etc.). By applying the chain rule of differential calculus over and over again to the composition of those
elementary operations, one can compute the derivative information exactly (up to the machine precision)
and in a completely mechanical fashion [4,7].

Derivative accuracy is a built-in feature of automatic differentiation. Improvements in the complexity are
driven mainly be smarter ways of exploiting the associativity of the chain rule of differential calculus and
by exploiting mathematical insight concerning the algorithms governing the underlying program.

Several tools have been developed to handle the automatic differentiation process. They include ADIFOR
[5] , ODYSSEE, and ADOL-F'for Fortran programs and ADOL-C and ADIC for C programs. For an up-to-
date account, readers are referred to the documentation available on the World Wide Web under URL
http://www.mcs.anl.gov/autodiff/adtools/.

In our work, we employed the ADIC (Automatic Differentiation in C) [I] tool. Given an ANSI C routine or
a collection of routines describing a function, ADIC uses the source-to-source program transformation
technique to produce a new, portable C code that computes derivatives of the output variables with respect
to any independent variables. Hence, general techniques that rely on the output of computer simulation
models, such as optimal design and sensitivity or reliability analysis, can all benefit from using automatic
differentiation. Currently, ADIC is the only automatic differentiation tool for ANSI C that employ source
transformation. ADIC has already been successfully applied to a 3-D volume grid generator for CFD
applications [6], a vehicle simulator, and a neural network specification.

3. Statistical Modeling and Differentiating of FCAP Codes
Our methodology addresses the problem of quantifying the impact of process-induced interconnect
variations on resistance (R) and capacitance (C) and circuit performance. Our methodology for obtaining
statistically based worst-case (i.e., 3-sigma) R (resistance), C (capacitance), crosstalk, and delay given
variations in interconnect-related process parameters is divided into three phases.

In the first phase, the 3-sigma values of capacitance, resistance, and partial derivatives of capacitances with
respect to selected interconnect process parameters are generated in batch-mode computation as part of an
enhanced version of HIVE [2], which is a parameterized interconnect model generator and library for R and

160

http://www.mcs.anl.gov/autodiff/adtools

C, and the Derivative HIVE Generator. Most of time is spent in derivative calculation in this phase. In the
second phase, randomized but correlated R and C are generated via a Monte Carlo method in a distributed
N-Pi network for a given net via the randomized RC generator. In the last phase, the randomized RC net
and nominal/3-sigma device models can be combined to characterize delay or crosstalk variation based on
device and interconnect variations.

of Indep.
Variables

Capacitance and resistance are computed using FCAP2/FCAP3. Originally, the derivatives were computed
using divided differences method. Then by using ADIC, we generated the differentiated version of
FCAP2/FCAP3 codes, respectively named FCAP2.ADECAP3.AD. FCAP2.AD/FCAP3.AD compute
both the original function values plus their derivative values. We have also post-optimized FCAP3.AD
program by hand that specially optimized the inner loop of the FCAP’s Poisson solver. As ADIC tool is
improved, the tool should be able to perform this automatically. A particular run of the statistical
modeling methodology with FCAP2 takes about 5-10 days of CPU time on an HP9000/755 workstation.
The computational complexity increases by an order of magnitude when FCAP3 is employed. Most of this
time is spent in computing derivatives; therefore, any method that reduces the derivative computation cost
is significant.

2 - 5 10

4. Measurements
For our experiments, we use two input models that compute (1) capacitances of two layers of 5-trace
signals routed orthogonally between two ground layers, and (2) potentials of two vertically parallel signals
routed between two ground layers. The experiments were performed on a Hewlett Packard 9000/780
workstation running HP-UX 10.20 and compiled using the Softbench C compiler with full optimizations.

Table 1 shows the runtime performance using divided-difference approximations versus ADIC “out of the
box” and ,postoptimized derivative code for FCAP3. Central differences, which, unlike one-sided
differences, usually deliver acceptable derivative approximations for FCAP2/3, would have required 2p+ 1
function evaluations to compute p derivatives plus the function values. Comparing the derivative values
computed via central differences and automatic differentiation, we found that these values agreed to within
one half of a percent.

of Indep.
Variables

The measurements are made for 2, 5, and 10 independent variables. The columns AD/Func. represent the
runtime ratio of FCAP3.AD over FCAP3. The columns DD/AD represent the runtime ratio of using central
divided difference approximations versus FCAP3.AD. We see that derivative code generated by ADIC out
of the box (AD) is 1.2 to 2.0 times faster than the divided-difference method (DD); and as the number of
independent variable increases, the speedup increases. This is due to the cost of non-floating-point
computations as well as certain computations are amortized over larger number of derivative computations.
In the case of postoptimized FCAP3.AD, the results are an additional factor of 1.7 to 2.4 times faster than
ADIC out of the box. Hence, the postoptimization steps can significantly improve the runtime
performance. In either case, since the statistical modeling of on-chip interconnect properties is dominated
by the cost of computing derivatives, considerable improvements are realized in the overall modeling
process.

2 5 10

Model 1

Function = 63.6 sec.

AD

AD Post-optimized

Model 2

Function = 31.3 sec.

AD/Func. DD/AD AD/Func. DD/AD AD/Func. DD/AD

4.08 1.23 6.92 1.59 12.1 1.74

2.10 2.38 3.52 3.13 4.93 4.26

AD/Func. DD/AD AD/Func. DD/AD AD/Func. DD/AD

Model 1

Function = 63.6 sec.

AD

AD Post-optimized

Model 2

Function = 31.3 sec.

161

AD/Func. DD/AD AD/Func. DD/AD AD/Func. DD/AD

4.08 1.23 6.92 1.59 12.1 1.74

2.10 2.38 3.52 3.13 4.93 4.26

AD/Func. DD/AD AD/Func. DD/AD AD/Func. DD/AD

AD 3.58 1.40

AD Post-optimized 2.08 2.40

Table 1. Comparison of FCAP3.AD versus central divided differences for two different input
models and three different sets of independent variables (3, 5, and 7). AD/Func. represents the
runtime ratio’of FCAP3.AD over function evaluation (FCAP3). DD/AD represents the runtime ratio
of central divided differences over FCAP3.AD.

6.28 1.75 10.4 2.02

3.71 2.96 4.99 ‘4.21

6 Conclusions
FCAP2 and FCAP3 are 2-D and 3-D, respectively, simulators to measure the parasitic electrical effects of
interconnects and devices. In the statistical modeling of interconnects, the evaluation of gradients of FCAP-
generated results are required. Conventional techniques cannot be relied upon to deliver fast and accurate
derivatives. Divided differences may not be accurate and are obtained slowly, symbolic approaches do not
appear to be feasible, and hand coding of derivatives is impractical. In contrast, automatic differentiation
can be used to obtain fast and accurate derivatives for functions defined by large codes.

The experiments show that ADIC-generated derivatives reduce dependence on grid variations compared
with the central divided difference method that had been employed before, while at the same time
executing up to twice as fast. By postoptimizing ADIC-generated derivative codes, (namely, identifying
inactive functions and employing the reverse mode of differentiation across a code block of the linear
solver), performance was improved by roughly another factor of two. Since the cost of interconnect
modeling is dominated by derivative computation, these derivative improvements result in considerable
speedup overall.

Automatic differentiation is a field in its infancy. Improvements in the complexity of AD-
generated derivative codes are driven by using smarter ways to exploit the associativity of the chain rule of
differential calculus, by exploiting mathematical insight concerning the algorithms governing the
underlying program, and by improving the program analysis capabilities of AD tools.

References
[11 C. Bischof , L. Roh, A. Mauer, “ADIC: An Extensible Automatic Differentiation Tool for ANSI-C,”

[2] N. Chang, V. Kanevsky, 0. S. Nakagawa, K. Rahmat, and S. Y. Oh, “Fast Generation of Statistically
Based Worst Case Modeling of On-Chip Interconnects,” International Conference on Computer Design,
Oct. 1997.

[3] K. Cham, S. Y. Oh, D. Chin, J. L. Moll, K. Lee, and P. V. Voorde, “Computer-Aided Design and VLSI
Device Development,” second edition, Kluwer, 1988.

Software: Practice and Experience, Vol. 27(12), pp. 1427-1456, December 1997.

[4] M. Berz, C.
Applications, and Tools,” SIAM, Philadelphia, 1996.

Bischof, G. Corliss, and A., Griewank, “Computational Differentiation: Techniques,

[5] C. Bischof, A. Carle, P. Khademi, and A. Mauer, “ADIFOR 2.0: Automatic Differentiation’of
FORTRAN 77 Programs,” IEEE Computational Science & Engineering, 3(3): 18-32, 1996.

[6] C. Bischof , W. Jones, A. Mauer, and J. Samareh, “Experiences with the Application of the ADIC
Automatic Differentiation Tool to the CSCMDO 3-D Volume Grid Generation Code,” in Proceedings of
the 341h AIAA Aerospace Sciences Meeting, AIAA Paper 96-07 16, American Institute of Aeronautics and
Astronomics, 1996.

[7] A Griewank and G. F. Corliss, “Automatic Differentiation of Algorithms: Theory, Implementation, and
Application,” SIAM, Philadelphia, 199 1 .

162

