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Abstract- A new method combining the finite 

element method (FEM) and the molecular dynam- 

ics (MD) for silicon is proposed. For simulta- 

neous simulation, the patch model was used to 
exchange displacement information in both direc- 

tions. A one-to-one correspondence of atoms and 

nodes is impossible for silicon lattice, therefore 

the atom was embedded in isoparametric element. 

The influence of internal displacement which is 
the additional displacement to the continuum one 

was taken into consideration. Martin's method 

was applied to calculate internal displacement and 

elastic constants. The verification model showed 
that the smooth transition of displacement and 
stress was realized in the boundary region of FEM 

and MD. These value showed good agreement with 
elastic solution. 

1. Introduction 

"Dislocation loops" are generated due to high stress 

concentration around nano-scale structures of semicon- 

ductor devices. However, the generation mechanism of 

dislocation is not fully understood. Molecular Dynamics 

(MD) is expected to provide useful results for such a nano- 

scale phenomenon. Simulation of the entire device struc- 

ture is impossible even by recent parallel supercomputer. 

It is effective to simulate only the important region by 

MD and the other region by Continuum approach, for ex- 

ample Finite Element Method (FEM). This work focuses 

on the mechanical (elastic) combination of FEM and MD 

for silicon that realizes the accurate stress distribution. 

2. Proposed methdd 

Until now, a combination method has not been pro- 

posed for silicon because of the difficulty posed by sili- 

con's complicated diamond-like structure. A new method 

is proposed as follows. 

The non-local property of interatomic force precludes 

the direct combination of FEM and MD. To avoid that 

problem, simultaneous simulation is carried out by ex- 

changing only displacements through transition region. 

That method, first proposed by Kohlhoff et a1.[1] for b.c.c. 

crystal, is employed. 

In their method, the whole system consists of four re- 

gions (I,II,III,IV) as shown in Fig.1. MD regions are from 

I to 111, and FEM regions are from I1 to IV. Each tran- 

sition region (11,111) provides the displacement boundary 

conditions for the other. The displacement of atoms in 

I1 supplies the boundary conditions of FEM (continuum), 

and conversely the displacement field of elements in region 

I11 supplies those of MD (atoms). The non-local atomic 

forces are transmitted to region I and I1 by fixing the 

atoms in region 111. The local reaction forces are trans- 

mitted to region I11 and IV by fixing the nodes in region 

11. Therefore mechanical balance is established between 

MD (1'11) and FEM (IIIJV). 

Elastic constants must be equal in MD region and FEM 

region for complete compatibility. Those obtained by MD 

simulation are employed. 

However, there are two problems regarding the appli- 

cation of this method to silicon. 

(1) A one-to-one correspondence of atoms and nodes is 

impossible for silicon lattice. 

(2) In addition to continuum displacement, internal dis- 

placement occurs in silicon lattice and affects the 
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elastic constants. 

For the first problem, in the transition region, atoms are 

embedded into FEM isoparametric elements[2] as shown 

in Fig.2. Every node must coincide with atom. In the case 

of transformation from FEM to MD, the displacements of 

atoms are fixed by using the FEM interpolation function. 

Conversely, nodes are fixed by atoms with which they 

coincide. 

0 (FEM) 

Fig. 2. The correspondence of atoms and a mesh 

For the second problem, the effect of internal displace- 

ment, i.e., nonlinear displacement due to the deforma- 

tion, is taken into account. Total displacement of atoms 

is equal to the sum of continuum (FEM) and internal dis- 

placement. Thus, to establish the method of determining 

the internal displacement and its effect on the elastic con- 

stants, Martin's formulation[3] was newly applied to MD. 

According to Martin's formulation, internal displace- 

ment vector tP is the product of the inverse of force con- 

stants tensor g,  the third-rank tensor D related to the 

piezeeffect and strain 77, as shown in Eq.(l). Elastic con- 

stants C are expressed in Eq.(2). The second term of 

the right-side represents the effect of internal displace- 

ment. Here 4 indicates the potential energy of a system. 

' 

0 shows volume. 5,, is the Kronecker delta, equal to unity 

if r = q and zero otherwise. 

Convergent calculation method is as follows. 

(1) 

(2) 

Set the initial displacement of both MD and FEM 

Fix the atomic displacement of region 111 by using 

the FEM result and compute the stable state of MD 

region (1,II) by the conjugate gradient method. 

Fix the nodal displacement of region I1 by using the 

MD result and compute the stable state of FEM re- 

gion (IIIJV). 

Check the convergence. If failed, return to procedure 

(3) 

(4) 

(2). 

3. Verification model and analysis 
method 

To verify the proposed method, a square model was 

adopted as shown in Fig.3. MD regions were set at the 

center of the model under the periodic boundary condi- 

tion in the z-direction and were surrounded by FEM re- 

gions. The number of atoms was 133 (region I) , 152 

(region 11) and 280 (region 111). The number of nodes 

was 32 (region 11, it corresponds the innermost atomic 

row), 280 (region 111), 920 (region IV). The number of 

elements was 560. Uniform displacement was enforced on 

the right-side nodes ( Ux=O.Ol[A],Uy=O.l[A]), and the 

left-side nodes were fixed. All the z-displacements were 

fixed (plain strain condition). For MD simulation, three- 

body Tersoff[4] potential was used to realize silicon lat- 

tice structures and the conjugate gradient method was 

used to find the atomic stable state. The FEM program 

for 3D elastic analysis based on infinitesimal deformation 

theory was prepared[2]. The isoparametric element which 

includes 8-nodes and 8-integration points was used. Stress 

was averaged and evaluated at nodes. 

The significant advantage of this proposed method is 

that the information transmits to FEM region from MD 
region which includes the unpredictable phenomenon. How 

ever in this paper, it dealt with the problem that a solu- 
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tion was obtained by only FEM for the purpose of high 

accurate verification. 

4. Results and Discussions 

Simultaneous calculation was completely convergent with 

30 iterations. The normalized norm of residual force be- 

came less than 1.0 x ~ O - ~ .  Displacement ( U r , U y )  and 

stress (cry) distribution along a plot line (see. Fig.3) are 

shown in Fig.4, Fig.5. Smooth transition of displacement 

and stress was realized at the boundary. These values 

showed good agreement with the elastic solution (FEM 

prediction). Errors of displacement and stress were 0.18 

% and 0.4 %, respectively. 

The slight disorder of stress distribution may be due 

to the use of FEM interpolation function and be concen- 

trated near the boundary due to the short-range property 

of potential. 

In order to examine the effect of internal displacement, 

calculation that ignored its effect was conducted. Stress 

distribution (cry) was shown in Fig.6. It should be noted 

that distribution was remarkably confused near the bound- 

ary in comparison with Fig.5. It appears that the neglect 

of the internal displacement might introduce those errors 

and the consideration of internal displacement might be 

necessary. 

5 .  Conclusion 

A method combining the finite element method and the 

molecular dynamics was proposed that could deal with 

the silicon lattice structure. The use of isoparametric ele- 

ment and the incorporation of internal displacement effect 

realized the combination. The validity of the proposed 

method was confirmed by use of a verification model. 
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4. Displacement distribution along a plot line (See 

Fig.3). 
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Fig. 5 .  Stress distribution along a plot line (See Fig.3). 
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