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Abstract 

The occurrence of unphysical negative concentrations in solutions to diffusion 
equations is a well known and severe problem. Especially in three dimensions 
finite element discretizations give qualitatively very poor results, while finite 
volume discretizations are much more stable. We investigate the cause of these 
instabilities and trace them back to constraints on the mesh. It turns out that 
in three dimensions conventional (i.e. Delaunay) meshes are only suitable for 
the finite box method, while Delaunay is an invalid constraint in the case of 
finite elements. 

1. Introduction 

The maximum principle is the most important property of solutions to  convection- 
diffusion equations. In its simplest form it states that both the maximum and the 
minimum concentrations occur on the boundary or at  the initial time. This implies 
that if the boundary and initial values are positive, then the solution is positive 
everywhere and the concentration never reaches negative values. I t  is desirable that 
the employed discretization also satisfies a maximum principle. As is well known, this 
is guaranteed, if the system matrix resulting from the discretization is an M-matrix [l]. 

2. Discretization using AMIGOS 

We compare the results of two different spatial discretizations for diffusion in three 
dimensions using AMIGOS [2] which is especially designed for simple but efficient 
model development. Through its powerful analytical model interface (AMI) it was 
possible to  implement the Finite Volume (FV) as well as the Finite Element (FE) 
method. This allows the comparison of the solutions on identical meshes with the 
same linear solver in a very simple and straightforward manner. 
Both for FV and FE we use the well known standard approaches with backwards 
Euler time discretization. 
For FV (see e.g. [3]) we calculate the Voronoi boxes and the corresponding interface 
areas for each element. In the case of FE  we use the Galerkin weighted residual 
approach with linear form functions. 
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Then the system.matrix K is of the form , 

where M denotes the mass matrix, S is the stiffness matrix, and Q denotes the 
diffusion constant (homogeneous case). To make K an M-matrix, the mass matrix 
has to  be lumped, and S also has to  be an M-matrix. Since S depends on the mesh, 
this condition translates to  a constraint on the mesh. 
In two dimensions Delaunay meshes guarantee that the maximum principle is satisfied 
for FV as well as for FE. In three dimensions Delaunay meshes are still sufficient and 
necessary for FV, as shown in [4]. 
However, for FE this does not hold anymore [5]: When applying FE  on a Delaunay 
mesh in three dimensions negative concentrations emerge, which implies that  the M- 
matrix property is lost. Until recently this phenomenon was not fully understood. 
But by using results from [4] and [6] it is possible to grasp what is going on: The 
constraints on the mesh for FE  and FV are two different purely geometric notions 
which are equivalent only in two dimensions. Each of them generalizes naturally to 
higher dimensions, and it can be proved that  neither of them implies the other any 
more. This is an essential discovery with heavy impact on the development of meshing 
strategies. 

' 

3. Numerical Experiments 

To illustrate some of the consequences we solve the pure diffusion equation on one 
and the same three dimensional Delaunay mesh using FE  and FV. We used an ortho- 
product point distribution on the cubic simulation domain. Every sub-cube was 
tetrahedralized into six tetrahedra. 
In both cases a Gaussian profile (offset 10l2) is used as the initial three-dimensional 
distribution. As expected FV gives qualitatively correct results. Fig. 1 is a one- 
dimensional cut, showing the initial distribution and the FE  and the FV solution 
after 120 time-steps. Even for this simple test problem the FE  solution strongly 
violates the maximum principle. 
Fig. 2 gives a two-dimensional cut and shows the bad quality of the FE  solution. On 
the black areas the solution becomes negative. Note that the mesh has translational 
symmetries, which spoil the rotational symmetry of the initial distribution. These 
areas spread out in time, as shown in Fig. 3. The absolute value of the emerging 
negative concentrations is much larger than the minimal initial concentration. Finally, 
Fig. 4 depicts the corresponding relative error between the FE  and the FV solution. 
The error oscillates strongly and is large on the regions, where the concentration is 
negative. But since mass is conserved the negative concentrations are compensated 
by additional erroneous mass in the positive areas. 
The negative concentrations are a particularly serious problem in diffusion in process 
simulation, because in typical applications the concentration varies in many orders of 
magnitude within a small area. For a more complicated transient problem like the 
pair diffusion model the negative concentrations lead to severe instabilities. 

r 

'Note that in this simple case the usage of a T5 tessellation for the sub-cubes will result in a 
Delaunay mesh which fulfills the newly introduced criterion by Xu and Zikatanov. 
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4. Impact on Meshing Strategies 

The obvious cure for these FE-troubles would be to use a mesh which gives an M- 
Matrix. However, as long as the available meshing tools concentrate on the Delaunay 
criterion, there is little hope of achieving this. 
We want to stress that from a Delaunay point of view these meshes can look really 
bad, but they are especially tuned to the FE-discretization and give qualitatively 
correct results. 
Otherwise mesh refinement has to  be employed. In practice this greatly increases the 
computational costs and only mitigates the observed effects. It will depend on the 
application, if one can live with negative concentrations and unphysical flows. As 
alternative one must decide for FV. 
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Figure 1: Comparison FE  versus FV. FE  
violates the maximum principle. 

Figure 2: 2D-cut after 5500 seconds. 
Concentration is negative on black ar- 
eas. 

5. Conclusion 

Using AMIGOS, we investigated the constraints which must be imposed on the mesh 
to avoid the occurrence of negative concentrations in diffusion simulation. 

1. In two dimensions a Delaunay triangulation will result in an M-Matrix both for 
the FE  and the FV discretization. 
2. In three dimensions Delaunay is the proper constraint on the mesh for FV. But 
for FE  we get a constraint which may be fulfilled by non-Delaunay grids and not 
fulfilled by Delaunay triangulations. In short: Delaunay is the wrong criterion (neither 
necessary nor sufficient) for FE  grids in three dimensions. 
3. Using currently available meshing tools the preferable approach to diffusion mod- 
eling is finite volumes. 
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Figure 3: 
Negative concentrations spread out. 

2D-cut after 8500 seconds. Figure 4: Relative error between F E  and 
FV . 
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