
7-7

A 3-dimensional process-simulator based on an open architecture

Tetsunori Wada, Hiroyuki Umirnoto, Masato Fujinaga,
Mitsunoii Kimura, Tetsuya Uchida, Kaina Suzuki,

Yu taka Akiyama, Masami Hane, Masahiro Takenaka,
Noriyuki Miura, Norihiko Kotani

Semiconductor Leading Edge Technologies, Inc.
Advanced Technology Research Dept.

292 Yoshida-cho, Totsuka-ku, Yokohama Yokohama 244-08 17 JAPAN

Abstract

A 3-dimensional process simulator based on an open architecture
has been design. A C++ like input language is designed to flexibly
control process flow and to easily add user designed function. A self
explaining data file format and its input/output C++ libraries are
developed to ensure data exchange between user's data file and
HySyProS by using C++ class libraries. Several classes for
discretizing and assembling drift-diffusion equations are developed for
testing diffusion models efficiently.

1.Introduction
As device size shrinks, various phenomena, such as transient enhanced diffusion, dose loss,

etc. are getting dominantly affecting transistor performances. TCAD tools are expected to
predict semiconductor device performance, especially process-simulator, by modeling these
phenomena quickly. This requires process simulator to serve as a basis of implementing new
models. It is also required to simulate device performance under many slightly different
conditions such as ion-implantation dose, thermal treatment conditions. This requires input
language to have a kind of programming language i n describing process flow, such as variables,
loop, condjtional jump, etc. When using simulators in device design, measured andor
simulated data are expected to be assembled quickly, for getting solutions of process integration,
failure analysis, etc. This requires a simulator to provide some methods for linking external
software, data, and implementing newly proposed model of diffusion, oxidation, etc.

A newly developed 3-dimensional process-simulator HySyProS uses the following
technology to solve above problems:

1)C++ like input data language and its interpreter program to control modeling programs
2)simple but versatile data-file format with read/write libraries
3)object oriented programming to access device structure data safely and efficiently

i

2.Design Concept
As described above, HySyProS is designed not only be used as a process simulator, but also

as an environment for developing process models. As a process simulator, so called Fair
model[I] , point defect model[2] for impurity diffusion, visco-elastic model for oxidation,
analytic model (Gaussian, Pearson-IV, dual-Pearson, etc.) with plus- 1 model for ion-
implantation, idealistic isotropic deposition, directional model for etching are installed.

As an environment for process model developments, it is very important to provide efficient
and secure method for handling data, such as grid, elements, region, their relations, and matrix
assembling methods. Several C++ classes, including oct-tree based mixed element (tetragonal,

127

pyramid, prism, and rectangler solid) for solving diffusion and^ oxidation model, have been
developed for this purpose. A C++ class for discretizing and solving drift-diffusion equation
using CVM (control volume method) is also developed and applied in solving diffusion models
mentioned above. Etching and deposition models are implemented by using equi-contour
method [3].

An interpreter program is linked to process-
models and U 0 functions. One can link external program with HySyProS, like a mask-
imaging model in Fig. 1, by using a calling function. During the simulation, data representing
device structure is accessed and updated mainly through the member function of C++ classes.

2-1. Interpreter program
We have designed a C++ like input language (hereafter we call it "scl") for describing process

flow, in which variables (with member function), conditional jump, loop, importinglexporting
functions, overloading function-name, external program calling are available. By using scl and
restarting function, a complicated process-flow, including branches, conditional sequence, etc.
can be expressed. Overloading function-name helps to develop or add, for example, a different
diffusion models having the same function name with different arguments. One can also run
external programs through his input data, and this helps mixed use with other software. Or,
one can use external program as if it is 'an intrinsic function of HySyProS, by wrapping his
program with scl scripts, and register a function name to a function-table.

Figure 1 shows a schematic of HySyProS.

2-2. Data-file format
Many simulators and tools, which will be frequently modified, are used by transferring and

exchanging data files. In this case, when some tool is modified to put additional output data, a
system using data file format based on a relative addressing, or a format using implicit rules,
cause confusion. We have developed simple, self-explaining format to avoid this confusion.
It is assumed that a data file can be divided into several blocks, and our format is applicable to
such a file. We designed a script, hereafter we call it a header, attached to the beginning of
each data block. The meaning, ordering, types are explained in the header by combinig
symbols. This
helps one to make a program code which ignore other data blocks automatically and access
specified data. .

Our data format is not
designed for realizing automatic data-conversion [4] from some format to this or vice-versa. It
is designed to read simple data, like scalar-, array-, structure-type data by inserting a header.
Rules of representing these infomiation is designed as simple as possible to make a header
easily.

A C++ libraries for reading and writing in our format are also developed.

Figure 2 shows a concept of our self-explainingtdata-file format.

3.Examples
About 80*40*40 cell are used

to simulate complicated structure formed after 33 process steps, and required CPU time is about
40 minutes (HP C-240). Figure 4(a) shows a trench comer after oxidation process (980C 5
niin). As is shown in it, oct-tree based mixed element grid is successfully generated. At the
corner and edges, grid is automatically refined during oxidation step, to represent accurate
structure. Figure 4(b) demonstrates the merging of two oxide regions after oxidation of poly-
silicon layer on an silicon di-oxide film. An oct-tree base mixed elements with the
combination of moving boundary is successfully representing device structure.

We have also been developing 3-dimensional device simulator, based on a same concept with
those of the present process-simulator. Figure 5 shows simulated I-V curves of nMOSFET's
using device structure data calculated by the process-simulator.

Figure 3 shows a simulation of stacked DRAM-cell structure.

128

Acknowledgement

realizing our concepts.
Authors thank to Dr. T. Yamauchi in Mathematical System Inc. for excellent effort of

We also thank to the member of our device-simulator team.

REFERENCES
[11 R.B.Fair "Silicon Integrated Circuits", Part B, pp.5-20, Academic Press, 1981.
[2] K. Ghaderi and G. Hobler, J. Electrochem, Soc., vol. 142, no. 5 , pp. ,1654-1658, 1995.
[3] M. Fujinaga and N. Kotani, IEEE Trans. Electron Devices, Vo1.44, No.2, p.226, 1997.
[4] S. G. Duvall, IEEE Trans. on CAD, vo1.7, No. 7, pp.741-754, 1988. ,

interpreter (scl language)

tunclion call

: A A A A t

. . : v
"standard class" methods

discretization class, grid class, etc.
I

array class, file r I i

data-file

riutu- Dlock
, cirtcr-block y . . 1

Fig.2 Concept of self-explaining data-file format.
Name, type, configuration file format. Name, type,
configurationof data is written in a block-header.

whole device structure Fig. 1 System diagram. Interpreter controls process
models such as diffusion, etc. Device structure data is
accessed through class-methods. Arrows shows data flow.

(1) (2) (3
Fig.3 Siiiiulation of DRAM-cell structure. (1) trench-isolation and bit-line patterning,
(2) , deposition of passivation-layer, (3) word-line patterning (to be continued to next
page)

129

(4) (5)
Fig.3 (4) deposition of passivation-layer, (5),(6)formation of stacked cell

(a)
Fig. 4 simulation examples of oxidation.

(b)
(a)trench structure, (b)merged oxide layer

10.1 L/W=O. 2/ 1 (U m)
I

Fig3 Simulated I-V curves calculated for different
channel dose, by using 3D device simulator

130

