
7- 1
\

Parallelization of a Monte-Carlo Ion
Simulator for Three-Dimensional

Structures

Implantation
Crystalline

A. Hossinger', M. Radi', B. Scholz2, T . Fahringer2, E.Langer', and S. Selberherr'

'Institute for Microelectronics, TU Vienna
Gusshausstr. 27-29, A-1040 Vienna, Austria

21nstitute for Software Technology and Parallel Systems, University of Vienna
Liechtensteinstr. 22, A-1092 Vienna, Austria

Abstract

The simulation of ion implantation using a Monte-Carlo method is one of the
most time consuming tasks in process simulation, which makes it a first-order
target for parallelization. We present a parallelization strategy for the Monte-
Carlo ion implantation simulator MCIMPL based on the message passing in-
terface (MPI), with an almost linear performance gain.

1. Introduction
When simulating semiconductor production processes, ion implantation is a very im-
portant, but also one of the most critical steps, concerning the simulation time. Due
to the complicated structures and the small dimensions of modern semiconductor
devices, Monte-Carlo simulation methods often have to be used to describe non-
planarity effects, phenomena resulting from ion channeling and large tilt angles, and
to provide accurate point-defect distributions for rapid thermal annealing processes.
To reach the expected accuracy, three-dimensional simulations have to be performed
with sophisticated models [11 [2], especially for very shallow implantation conditions.
By meeting all these requirements the simulation times exceed one night or even
more on high-end workstations for large structures. Therefore the parallelization of
the Monte-Carlo ion implantation simulation process step is desirable to avoid a bot-
tleneck in the process simulation flow, because normally a cluster of workstations is
available to perform process simulation and optimization. We present a paralleliza-
tion method which allows a distributed simulation on a cluster of single processor
workstations. Our parallelization strategy is based on MPI and it allows to reuse all
sophisticated methods and models [l] [3] developed for the single processor version
without modification.

2. Parallelization Strategy
We use a master-slave strategy, where the master process provides all the 1/0 op-
erations and controls and synchronizes the behavior of all slaves which perform the
actual simulation. The basic concept of the Monte-Carlo ion implantation simulation
method is that the trajectories through the simulation domain are calculated for a
large number of ions. The final positions of calculated particles and the number of
generated point-defects are stored in a histogram which is used to derive the particle

103

3

Figure 1: Schematic presentation of the
split of the simulation domain into sub-
domains and of the distribution of the

' subdomains among several processors.

and point-defect distributions. The parallelization is achieved by splitting the simu-
lation domain into several rectangular prismatic subdomains (Fig. 1). Each available
CPU is responsible for several of these subdomains. This means that all particles
moving through a certain region of the simulation domain are calculated by a certain
CPU and that all simulation results are stored in the memory belonging to a certain
CPU. Thereby the trajectories calculated as well as the memory consumption are
distributed among several workstations. When initializing the simulation the master
process determines the distribution of the subdomains according to the number and
the speeds of the available CPUs, considering the following conditions.

T I

V,, 0, are, respectively, the volume and the surface of a prismatic scope belonging to
one processor, as denoted in Fig. 1 by the thick lines. CPU, is the relative computing
capability (e.g, floating point operations per second) of one processor. (1) ensures
that every CPU gets a reasonable amount of trajectories for calculation, because
a faster CPU can calculate more trajectories than a slower CPU. Due to the fact
that the implanted ions are equally distributed over the device surface the number of
trajectories that have to be calculated by one CPU is proportional to the volume of
the prismatic scope belonging to this CPU, assuming that the same models are used
throughout the whole simulation domain.
(2) guarantees a minimum of communication between the CPUs. It is possible that a
particle moves to the prismatic scope of another CPU during its motion through the
simulation domain. In that case the particle described by its physical and modeling
properties has to be exchanged between two CPUs. Due to the fact that such com-
munication events always limit the performance gain of a parallelized application it
is desirable to minimize this communication. The probability that a particle leaves
the scope of a CPU is all the lower the larger the volume V, of the scope, and it is all
the higher the larger the interface area Oi to other CPUs.
In order to take into account the influence of crystal damage on the trajectory of
an ion a transient simulation is explicitly introduced. This is not necessary for a

104

single processor version, because in that case the single trajectories are calculated
one after the other while in the parallelized version the order of calculation is not
deterministic. It is assumed that the ions belonging to the same time step do not
influence each other and therefore the order of calculation is of no relevance within
one time step. This requirement is met if the number of ions that are calculated per
time step is significantly smaller then the total number of calculated ions.

3. Simulation Flow
First the master parses the command-line, reads the input files and initializes the
physical properties of the simulation domain, the physical models and the implan-
tation conditions. The initialization data are sent to all slaves. Then the master
creates the subdomains and evaluates a distribution scheme. The subdomains and
the distribution scheme are sent to all slaves. Thereby all processes are informed
about the scope of responsibility of all other processes too. Whenever a particle tra-
jectory leaves the scope of responsibility of a slave, this slave knows where to send
the particle.
After this initialization the master process calculates the initial conditions of the
implanted ions and prepares them for being sent to the slaves. When all ions in all
subdomains belonging to one time step are prepared one package of ions is sent to
each slave. Then the initial conditions of the ions of the next time step are prepared
for sending before the master process enters a wait-loop where it determines if all
slaves have finished the last time step. The sending, packing and waiting is repeated
until the total number of simulated ions is calculated. Afterwards the master process
sends a 'Simulation Finished' request t o all slaves, collects the information about all
simulated ion trajectories, performs the statistical analysis for the resulting doping
and point-defect distributions, prepares the generation of the output and writes the
output files.

'

The slaves enter a wait-loop immediately after the initialization process, where they
are waiting for a request either from the master or from a slave. Five types of requests
are managed.

Ion Package Request:
The trajectories of the ions in the ion package which is sent either from the
master or from another slave are calculated. During the trajectory calculation
simulation data can be stored in or received from the area of responsibility of
another slave. Moreover a simulated particle can be moved to another slave by
sending an appropriate request.

Store Simulation Data Request:
Simulation data that have to be stored in the local memory are received from
another slave. Information about the type and the position of the data is
received before storing the data.

Send Simulation Data Request:
Information about the type and the position of required data is received, and
the corresponding simulation data are sent to another slave.

New Time Step Request:
The initialization procedure for a new time step is called.

Simulation Finished Request:
While the slave returns to the wait-loop when he has finished one of the above
requests he leaves the loop in case of a 'Simulation Finished' request. All sim-
ulation results are sent to the master before the slave terminates his operation.

105

4. Results
By measuring the performance‘gain on a network of workstations it has turned out
that this parallelization strategy delivers an almost linear performance gain (Fig. 2),
but only if the processor load is constant on all CPUs throughout the simulation. In
case of varying processor loads the performance gain can decrease dramatically, be-
cause the calculation time for all trajectories a t one time step is not constant anymore
on all CPUs. Thereby one slave always holds up all other slaves due to synchroniza-
tion at the end of each time step. Additionally it has to be mentioned that the size of
one subdomain must be larger than the lateral range of the implanted ions to keep the
communication overhead low. This limits the number of available subdomains and
thereby the number of CPUs that can be used for a parallel simulation. However for
three-dimensional application the number of subdomains is larger than 1000 which
normally exceeds the number of available processors.

I ,

ideal speed-up

measured speed-up (varying loads)
5 - - measured speed-up (constant loads)

Figure 2: Measured speed-up compared
to the ideal speed-up for two different

0 3 - load situations.

i

3 4 5 6
Number of CPUs

5. Conclusion
We have presented a method for parallelizing a Monte-Carlo ion implantation sim-
ulator with a minimum of communication overhead and therefore an almost linear
speed-up. For strongly varying processor loads a dynamic load balancing should be
implemented. Besides a tremendous reduction of the simulation time a splitting of the
memory requirement is achieved, which allows to utilize several small workstations
for the simulation of large three-dimensional problems.

6. Acknowledgment
This work has been carried out within the SFB project AURORA, funded by the
Austrian Science Fund (FWF).

References

111

121

131

A. Hossinger and S. Selberherr, “Accurate Three-Dimensional Simulation of Dam-
age Caused by Ion Implantation,” in Proc. 2nd Int. Conf. on Modeling and Sim-
ulation of Microsystems, pp. 363-366, Apr. 1999.

A. Hossinger, S . Selberherr, M. Kimura, I. Nomachi, and S. Kusanagi, “Three-
Dimensional Monte Carlo Ion Implantation Simulation for Molecular Ions,” in
Proc. of the 5th Int.‘ Sym. on Process Physics and Modelling in Semiconductor
Technology, pp. 18-25, Apr. 1999.

W. Bohmayr, A. Burenkov, J. Lorenz, H. Ryssel, and S. Selberherr, “Tra-
jectory Split Method for Monte Carlo Simulation of Ion Implantation,” IEEE
Trans.Semiconductor Manufacturing, vol. 8 , no. 4, pp. 402-407, 1995.

106

