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Abstract 

The simulation of ion implantation using a Monte-Carlo method is one of the 
most time consuming tasks in process simulation, which makes it a first-order 
target for parallelization. We present a parallelization strategy for the Monte- 
Carlo ion implantation simulator MCIMPL based on the message passing in- 
terface (MPI), with an almost linear performance gain. 

1. Introduction 
When simulating semiconductor production processes, ion implantation is a very im- 
portant, but also one of the most critical steps, concerning the simulation time. Due 
to the complicated structures and the small dimensions of modern semiconductor 
devices, Monte-Carlo simulation methods often have to be used to  describe non- 
planarity effects, phenomena resulting from ion channeling and large tilt angles, and 
to provide accurate point-defect distributions for rapid thermal annealing processes. 
To reach the expected accuracy, three-dimensional simulations have to be performed 
with sophisticated models [ 11 [2], especially for very shallow implantation conditions. 
By meeting all these requirements the simulation times exceed one night or even 
more on high-end workstations for large structures. Therefore the parallelization of 
the Monte-Carlo ion implantation simulation process step is desirable to avoid a bot- 
tleneck in the process simulation flow, because normally a cluster of workstations is 
available to perform process simulation and optimization. We present a paralleliza- 
tion method which allows a distributed simulation on a cluster of single processor 
workstations. Our parallelization strategy is based on MPI and it allows to reuse all 
sophisticated methods and models [l] [3] developed for the single processor version 
without modification. 

2. Parallelization Strategy 
We use a master-slave strategy, where the master process provides all the 1/0 op- 
erations and controls and synchronizes the behavior of all slaves which perform the 
actual simulation. The basic concept of the Monte-Carlo ion implantation simulation 
method is that the trajectories through the simulation domain are calculated for a 
large number of ions. The final positions of calculated particles and the number of 
generated point-defects are stored in a histogram which is used to  derive the particle 
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Figure 1: Schematic presentation of the 
split of the simulation domain into sub- 
domains and of the distribution of the 

' subdomains among several processors. 

and point-defect distributions. The parallelization is achieved by splitting the simu- 
lation domain into several rectangular prismatic subdomains (Fig. 1). Each available 
CPU is responsible for several of these subdomains. This means that all particles 
moving through a certain region of the simulation domain are calculated by a certain 
CPU and that all simulation results are stored in the memory belonging to  a certain 
CPU. Thereby the trajectories calculated as well as the memory consumption are 
distributed among several workstations. When initializing the simulation the master 
process determines the distribution of the subdomains according to the number and 
the speeds of the available CPUs, considering the following conditions. 

T I  

V,, 0, are, respectively, the volume and the surface of a prismatic scope belonging to 
one processor, as denoted in Fig. 1 by the thick lines. CPU, is the relative computing 
capability (e.g, floating point operations per second) of one processor. (1) ensures 
that every CPU gets a reasonable amount of trajectories for calculation, because 
a faster CPU can calculate more trajectories than a slower CPU. Due to  the fact 
that the implanted ions are equally distributed over the device surface the number of 
trajectories that have to be calculated by one CPU is proportional to the volume of 
the prismatic scope belonging to this CPU, assuming that the same models are used 
throughout the whole simulation domain. 
(2) guarantees a minimum of communication between the CPUs. It is possible that a 
particle moves to the prismatic scope of another CPU during its motion through the 
simulation domain. In that case the particle described by its physical and modeling 
properties has to be exchanged between two CPUs. Due to the fact that such com- 
munication events always limit the performance gain of a parallelized application it 
is desirable to minimize this communication. The probability that a particle leaves 
the scope of a CPU is all the lower the larger the volume V,  of the scope, and it is all 
the higher the larger the interface area Oi to other CPUs. 
In order to take into account the influence of crystal damage on the trajectory of 
an ion a transient simulation is explicitly introduced. This is not necessary for a 
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single processor version, because in that case the single trajectories are calculated 
one after the other while in the parallelized version the order of calculation is not 
deterministic. It is assumed that the ions belonging to the same time step do not 
influence each other and therefore the order of calculation is of no relevance within 
one time step. This requirement is met if the number of ions that are calculated per 
time step is significantly smaller then the total number of calculated ions. 

3. Simulation Flow 
First the master parses the command-line, reads the input files and initializes the 
physical properties of the simulation domain, the physical models and the implan- 
tation conditions. The initialization data are sent to all slaves. Then the master 
creates the subdomains and evaluates a distribution scheme. The subdomains and 
the distribution scheme are sent to all slaves. Thereby all processes are informed 
about the scope of responsibility of all other processes too. Whenever a particle tra- 
jectory leaves the scope of responsibility of a slave, this slave knows where to send 
the particle. 
After this initialization the master process calculates the initial conditions of the 
implanted ions and prepares them for being sent to the slaves. When all ions in all 
subdomains belonging to one time step are prepared one package of ions is sent to 
each slave. Then the initial conditions of the ions of the next time step are prepared 
for sending before the master process enters a wait-loop where it determines if all 
slaves have finished the last time step. The sending, packing and waiting is repeated 
until the total number of simulated ions is calculated. Afterwards the master process 
sends a 'Simulation Finished' request t o  all slaves, collects the information about all 
simulated ion trajectories, performs the statistical analysis for the resulting doping 
and point-defect distributions, prepares the generation of the output and writes the 
output files. 

' 

The slaves enter a wait-loop immediately after the initialization process, where they 
are waiting for a request either from the master or from a slave. Five types of requests 
are managed. 

Ion Package Request: 
The trajectories of the ions in the ion package which is sent either from the 
master or from another slave are calculated. During the trajectory calculation 
simulation data can be stored in or received from the area of responsibility of 
another slave. Moreover a simulated particle can be moved to another slave by 
sending an appropriate request. 

Store Simulation Data Request: 
Simulation data that have to be stored in the local memory are received from 
another slave. Information about the type and the position of the data is 
received before storing the data. 

Send Simulation Data Request: 
Information about the type and the position of required data is received, and 
the corresponding simulation data are sent to another slave. 

New Time Step Request: 
The initialization procedure for a new time step is called. 

Simulation Finished Request: 
While the slave returns to the wait-loop when he has finished one of the above 
requests he leaves the loop in case of a 'Simulation Finished' request. All sim- 
ulation results are sent to the master before the slave terminates his operation. 
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4. Results 
By measuring the performance‘gain on a network of workstations it has turned out 
that this parallelization strategy delivers an almost linear performance gain (Fig. 2), 
but only if the processor load is constant on all CPUs throughout the simulation. In 
case of varying processor loads the performance gain can decrease dramatically, be- 
cause the calculation time for all trajectories a t  one time step is not constant anymore 
on all CPUs. Thereby one slave always holds up all other slaves due to synchroniza- 
tion at  the end of each time step. Additionally it has to  be mentioned that the size of 
one subdomain must be larger than the lateral range of the implanted ions to keep the 
communication overhead low. This limits the number of available subdomains and 
thereby the number of CPUs that can be used for a parallel simulation. However for 
three-dimensional application the number of subdomains is larger than 1000 which 
normally exceeds the number of available processors. 
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Figure 2: Measured speed-up compared 
to the ideal speed-up for two different 
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5. Conclusion 
We have presented a method for parallelizing a Monte-Carlo ion implantation sim- 
ulator with a minimum of communication overhead and therefore an almost linear 
speed-up. For strongly varying processor loads a dynamic load balancing should be 
implemented. Besides a tremendous reduction of the simulation time a splitting of the 
memory requirement is achieved, which allows to  utilize several small workstations 
for the simulation of large three-dimensional problems. 
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