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Abstract

Three simple mesh examples are presented to show that neither Delaunay nor
strictly non-obtuse mesh elements are required for a finite element diffusion
computation. Mesh requirements based on a recently found condition are in-
vestigated to guarantee certain properties of the resulting stiffness matrix. The
experiments are conducted using the general purpose solver AMIGOS.

1. Mesh Requirements

Certain conditions for the stiffness matrix of the Laplace operator are required during
finite element diffusion simulation. We present three examples of a mesh to show the
different scope of the Delaunay criterion and a newly introduced finite element mesh
criterion by [2]. Our presented examples prove that the Delaunay criterion is neither
sufficient nor necessary to fulfill the requirements. This is important insight and
complements previous research [3]. It is also shown that a strict adherence to a sole

non-obtuse angle criterion is not necessary.

Finite element (FE) mesh criterion: Let e; ; be an edge with n adjacent tetra-
hedra ;. For each £, two planes exist which do not contain e; ; and which span
a dihedral angle ©. The two planes share an edge with length l;. The sum
over k = 1...n of the cotangens of O, weighted by [; must be greater or equal
than zero.

> i cot b > 0
k=1 -

Figure 1 depicts an example where this criterion is violated for the interior edge €; ;.
Four adjacent tetrahedra exist of which two span a 90° angle. Hence, cot©; = 0
and cot©4 = 0. As one can see from the figure cot ©; = cot O, = —\/% (04, ©, are

obtuse, ~ 125.3°) and hence the total sum is negative.

The two-dimensional empty-circumcircle Delaunay criterion is equivalent to the re-
quirement that the sum of the two opposite angles of an adjacent pair of triangles is
equal or smaller than 180°. While in two dimensions the FE criterion is equivalent
to the Delaunay criterion, it evolves to an entirely different criterion in three dimen-
sions. The Delaunay triangulation is known to maximize the minimum angle in two
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Figure 1: Ts tessellation and FE criterion Figure 2: Ty tessellation, no obtuse dihe-
for edge e; ;. ‘ . dral angles.

dimensions [4]. This is not valid in three dimensions with respect to the dihedral
angles. It rather minimizes the largest minimum-containment sphere [4]. This is also
related to the fact that in three dimensions Delaunay slivers exist which do not have
a two-dimensional anology: A Delaunay sliver contains obtuse dihedral angles but
does not expose an extreme ratio between its edge lengths. The above mentioned FE
criterion on the other hand is applied to dihedral angles in three dimensions.

2. Examples

The examples are (i) a Delaunay mesh which is not suitable as a finite element mesh for
diffusion applications, (ii) a Delaunay mesh which is suitable, and (iii) a non-Delaunay
mesh with obtuse dihedral angles which is still suitable as a finite element mesh. The
examples were constructed by exploiting an ortho-product point distribution. A cube
defined by eight points can be tetrahedralized into two qualitatively different ways.

T, tessellation: A cube is composed of six tetrahedra (Fig. 1).

Ts tessellation: A cube is composed of five tetrahedra (Fig. 2).

For comparison purposes we used a specific tessellation Ty which contains sliver ele-
ments with obtuse dihedral angles. The tessellation 75 on the other hand does not
contain such elements. (Note that there are also Tj tessellations possible which do
not contain obtuse angles.) '

The key idea is that all elements of both tessellations fulfill the empty-circumsphere
Delaunay criterion, because all points lie-on the perimeter of a single sphere. Hence,
both meshes satisfy the Delaunay criterion and yet only one satisfies the FE cri-
terion. The two fundamentally different meshes based on an identical point cloud
are depicted in Fig. 4 and Fig. 5. The mesh which fulfills the FE criterion (Fig. 2,
Fig. 5) indeed succeeds to yield the required entries in the stiffness matrix as could be
tested by diffusion simulation using AMIGOS [1]. The most important fact however
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Figure 3: Ty type tessellation with a shifted point.

is shown by the third example. Further exploiting the ortho-product point set and
- its type T; tessellation with slightly shifted points in certain locations results in a
non-Delaunay mesh which still satisfies the FE criterion. Figure 3 shows an instance
of the mesh consisting of eight cubes. The point in the middle has been shifted.
The Delaunay criterion is violated, because the circumspheres of several unchanged
tetrahedra contain the shifted point in its interior. Two non-Delaunay triangles are
indicated in Fig. 3. Still, the simulation using AMIGOS for the entire mesh (Fig. 6)
shows, that the requirements for the stiffness matrix are fulfilled. The shifting of
a point introduces obtuse dihedral angles and positive contributions to off-diagonal
elements of the stiffness matrix. However, in total due to the sum of the entries of
the adjacent elements, the FE criterion is satisfied and the stiffness matrix remains
correct. '

3.- Conclusion

The investigated mesh requirements which depend on the employed discretization
scheme, lead to the conclusion that in two dimensions Delaunay meshes are in all cases
preferable. In three dimensions Delaunay meshes are neither sufficient nor necessary
for a finite element simulation. In fact a non-Delaunay mesh with obtuse angles
could be constructed for a successful finite element computation. Existing meshing
techniques often try to avoid any obtuse dihedral angles. This is not necessary if
techniques can be developed to generate finite element meshes which directly satisfy
the FE criterion.
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_ Figure 4: Delaunay mesh (T;), 3072 tetra- Figure 5: Delaunay mesh (7), 2560 tetra-

hedra. hedra.

Figure 6: Non-Delaunay mesh, 2560 tetra-
hedra.
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