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Abstract 

In this paper we present a simulation approach for electron transport in single-
electron devices based on a weak-coupling formulation for the linear-response 
transconductance of a quantum dot/reservoir system. A simulation tool de­
vised for the simulation of single-electron transistors has been developed. It 
provides the equilibrium solution of the nonlinear Poisson equation for the clas­
sical charges in the bulk and the self-consistent solution of the 3D-Schrodinger-
Poisson equation for the quantum dot. The finite temperature groundstate of 
the few-electron ensemble in the dot is extracted by evaluation of the Gibbs dis­
tribution. The program is coupled to a 3D modeling tool for flexible geometry 
specification. 

1. Introduction 

Single-electron transistors (SET) are an emerging class of devices for potential mem­
ory and logic applications. Two of the key concepts in the operation of single-electron 
devices are that of the Coulomb blockade and of single-electron tunneling. The sim-
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Figure 1: Schematic view of the circuit representing a two-terminal single electron transis­
tor. The dot is coupled to the reservoirs via tunneling junctions while the coupling to the 
gate is capacitive. 

plest model for a single-electron tunneling structure consists of a reservoir weakly 
coupled to a quantum dot. A basic transistor structure (Figure 1) consists of two 
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independent reservoirs which are coupled to the dot via tunneling junctions. The 
potential in the dot depends on one or more capacitively coupled gate electrodes. 
Most present effort towards simulation of single-electron effects in nanostructures is 
circuit oriented and based on semi-classical models for the self-capacitance of metal 
islands (e.g. [1]). In semiconductor SETs, however, the discrete nature of the elec­
tron states makes a self-consistent analysis of a electron ensemble in a strong OD 
confinement necessary. Furthermore, assumptions regarding the appropriate carrier 
statistics have to be shifted from purely grand-canonical to canonical ensemble theory, 
appropriate for the description of systems with a few electrons under the influence of 
external reservoirs. 

2. Numerical methods 

In this paper, a simulation tool devised for the simulation of SETs at the solid-state 
device level is presented. The screening of the charges in the bulk is described by 
means of a classical Thomas-Fermi model for electrons and holes in equilibrium. A 
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Figure 2: Performance of the quasi-Newton algorithm (o) versus a simple mixing method 
(D) and Anderson mean-value mixing (A). 

standard Newton-Raphson method is employed to solve for the electrostatic potential 
4>{p), treating the dot charge classically. In a second step, the dot charge is replaced 
by charges arising from discrete electron occupation numbers, and a 3D-Schrodinger-
Poisson equation is solved for each occupation. The nonlinear problem is formulated 
in terms of a multidimensional root search for a vector function with the values of 
the potential at discrete mesh points as argument 

F(0(p),„xc[n]) = O. (1) 

p is the total carrier density, n the electron density and F the vector function whose 
root is sought. A local approximation [2] to the exchange-correlation potential vxc 

is used to account for quantum effects in the electron-electron interaction. This 
approach is justified if the number of bulk charges by far exceeds the number of 
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charges in the dot, and therefore, changes in the electrostatic potential are significant 
in the dot region only. 
A powerful quasi-Newton method (Broyden method [3]) to minimize the residual of 
highly nonlinear sets of equations lias been implemented. The convergence is not 
quadratic as with Newton-Raphson methods. However, superlinear convergence is 
achieved. The method is thus superior in performance to underrelaxation methods. 
Apart from the convergence rate, the stability of the self-consistent iteration has also 
been improved. We use a preconditioned bistable conjugate gradient method as the 
linear solver and a very effective Jacobian-Davidson QR algorithm to solve for the 
lowest eigenvalues of a sparse matrix. 

3. Physical aspects 

The Gibbs distribution Pcq({ni}) of the electron population in a quantum dot in 
equilibrium with the reservoirs is evaluated in order to find the true many particle 
ground state of the system of dot and reservoir 

cxP\-(F({n,},N)-EFN)/k»T] ( 2 ) 
c q U i]) ~ Y. exP[-(F({nJ,N) - EFN)/kBT] 

{«.} 

where F{{m}, N) denotes the total free energy of the system with N electrons and the 
occupation configuration {m}, (n, = 0,1) and EF is the Fermi-energy, respectively. 
Key parameters for the device operation such as the thermodynamical average ot the 
number of electrons in the quantum dot 

(N) = Y,P^({ni})NS".z«. (3) 

or the differential capacitance 

Cd = e > f > . (4) 
can be extracted. The quantity ft = F(N + 1) - F(N) defines the chemical potential 
of the dot. Equation (4) in the zero temperature limit corresponds to the equation 
for the differential capacitance given by Macuchi et al. [4]: 

Cd = c2[»(N)-,i(N-l)}-1. (5) 

In addition we calculate the linear response transconductance through the confine­
ment region using the solution to the set of detailed balance equations (master equa­
tion) derived by Beenakker [5] 

G = ^YreM)Y,^T^J(F({n> + k},N + l)-F({n,},N)-EF). (6) 

where Td and P are the tunneling rates for the drain- and source-side barrier, re­
spectively. They are estimated using Fermi's golden rule. Each data point of the 
transconductance characteristics requires the evaluation of a set of total free energies 
F{{n,}, N), which result from the self-consistent evaluation of the screening. At low 
temperatures it is possible to restrict the summation in the Gibbs distribution to those 
configurations n, whose total free energy is close to the minimum Fml„. In the zero 
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temperature limit of the differential capacitance (5), the condition for the appearance 
of a conductance peak can be reduced to the degeneracy of two values of F. ine 
position of the conductance peaks is then equivalent to the difference of the total tree 
energies at N and N - 1. Peaks are sufficiently described by delta functions (Figure 
3). However, with increasing temperature a wider range of occupation configura­
tions becomes relevant and the numerical effort increases likewise. Thus, numerical 
effectiveness and stability of the self-consistent iteration is a key requirement. 

4. Conclusions and outlook 

We have connected the simulator to a tensor-product mesh editor that allows a high 
degree of freedom with respect to geometry modeling and boundary description. In 
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Figure 3: Position of conductance peaks for a test structure at T = 0 K. The dot diameter 
is increased from 10 nra at the upper panel to 25 nm at the lower panel. 

general it is planned to incorporate the simulator in an existing TCAD environment 
of ISE AG Zurich. An interface to a conventional device simulator could extend the 
class of devices that can be tackled considerably. 
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