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Abstract 

Boundary conditions for viscous flow thermal oxidation equations in pressure 
potential form are derived in a way which is physically consistent and also con
venient for practical implementation. A role of the incompressibility constraint 
on oxide boundary is emphasised. A possibility to employ the standard piece-
wise linear finite element or finite volume discretization schemes is justified. 
Importance and correctness of the derived boundary conditions are practically 
demonstrated in the simulation of the standard LOCOS process. 

1. Introduction 

The incompressible viscous flow equations are commonly employed for the modeling of 
thermal oxidation processes at high temperatures. However, numerical treatment of 
the incompressibility constraint typically requires special concerns with the selection 
of discrete approximation spaces and solving procedures [1]. An effective alternative 
is to employ the pressure potential form (PPF) of the viscous flow equations [2]. For 
an oxide region fi with boundary V (Fig. 1), it is defined by: 

- / i W + V p = 0 in ft (1) 
V2p = 0 in fi (2) 

V - i ? = 0 on T (3) 

where v is oxide velocity, p is mean pres
sure and /J is dynamic oxide viscosity. It 

p Ls^^r" should be emphasised that the boundary 
v-—~— \A constraint (3) is the necessary "boundary" 

condition for the equivalence of PPF and 
Figure 1: Oxide region and interfaces. the original Stoke's problem [2]. 

The two essential boundary conditions (BCs) for thermal oxidation equations are: 
v • n = —V on the Si-SiOi interface (Yv) where V is the Deal-Grove oxide velocity, 
and a • h = T on the force balance interface (T/), where a and T are the total stress 
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tensor and a surface force vector. Here n is an outward unit normal vector on the 
boundary I\ It is used with the corresponding unit tangential vector t (Fig. 1) to 
erect a local boundary coordinate system (i,n). 

An important advantage of PPF is a simple and straightforward formulation of the 
weak statements for (1) and (2) as: 

/,v«,W + /g^-/,£* = o (4) 

However, notice that a practical implementation of (4) and (5) requires the specifica
tion of additional Neumann BCs; for pressure on Vv and velocity components on T;. 
This paper is intended to demonstrate a possible circumvention of that problem. 

2. Pressure Neumann BC on the Si-Si02 Interface (I\,) 

The ambiguity in the pressure Neumann BC formulation is today completely resolved 
identifying it simply with the normal component of the momentum equation (1) on 
I \ [2]. However, since second derivatives appear in this formulation, its practical 
implementation in (5) is not straightforward. 

We have considered here as more convenient to derived the pressure Neumann BC 
directly within the weighted residual form. Multiplying momentum equation (1) by 
V<£ and using identity — V2v = V X (V x v) that holds for V • v = 0 we have 

jVp-V<t>=j //[V x (V x {?)] • V</>. (6) 
n 

Integrating by parts in the right hand side of (6) we obtain 

fVp-V<f>- fng-V4> = Q where g = (ii • V)v~ V (v • ft). (7) 
n r„ 

Notice that (7) actually represents the weak residual statement (5) with incorporated 
pressure Neumann BC. The integral term on Tv involves a vector-valued function g 
that verifies g • h = 0 and also allows implementation of the conventional piecewise-
linear approximation functions. 

3. Velocity Neumann BC on the Force Balance Interface (Tf) 

The only physically relevant basis for the formulation of the Neumann BCs for velocity 
components on Tj are: (i) the balance of the tangential force components, and (ii) 
the boundary constraint (3). Notice that the balance of the normal force components 
is not appropriate here since it already serves as the essential pressure BC on T/. 

For simplicity, we consider here only a 2D case with traction free interface T/. In the 
local boundary coordinates with velocity components (vt,vn), the balance of tangential 
forces and the divergence free condition can be expressed as: 

dvn dvt dvn dvt 

-777 + - 5 - = 0 and -H— + — = 0. (8) 
at on on dt 
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div v (1/min) 

Figure 2: Velocity divergence obtained with the homogenous Neumann pressure BC 
in an initial pad oxide. 

div v (1/min) 
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Figure 3: Velocity divergence obtained with the derived pressure BC in an initial pad 
oxide. 

p (MPa) 

Figure 4: Pressure distribution obtained with the homogenous Neumann pressure BC 
at the end of LOCOS formation. 
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Figure 5: Pressure distribution obtained with the derived pressure BC at the end of 
LOCOS formation. 
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Introducing global velocity components (vx,vy) in (8) using vn - vxnx + vyny and 
vt = vxtx + Vyty, we obtain a system: 

(nx ny\ [%Z\__(U tv ).( f). (9) 

The solution of (9) gives the unique set of Neumann BCs for velocity components: 

dvx . . . . s dv3 

— = (-nxny + txty) -^ 
9vx . , , , \ dvx ( 2 , t2\ <tl (10) 
—f. = {-nxny + txty) -jrr + {~ny + ty) m v / 

d-£ = (nl-tx)
d-£ + (n,ny-txty)

di? (") 
which are defined in terms of the first order tangential derivatives of the global velocity 

components on T/. 

4. Case Study 
It should be emphasised that some of the fractional step Pressure correction methods 
based on PPF still relay on the simple homogeneous Neumann BC for pressure [3]_ In 
order to demonstrate the importance of using the phys.ca ly consistent derived BCs 
for viscous thermal oxidation equations in PPF, we consider here some simulation 
results of the standard LOCOS process. 
Fig. 2 shows that the usage of the inconsistent homogenous Neumann BC for pressure 
results in significant non-physical compressibility of the pad oxide body. On the other 
side, it is not the case with the application of the derived inhomogeneous pressure 
BC, as it is shown in Fig. 3. Additionally, Figs. 4 and 5 show significantly different 
distributions of the pressure in the final LOCOS structure when the homogenous and 
correct inhomogeneous derived Neumann BC are used. 

5. Conclusion 
The advantage of viscous thermal oxidation equations in PPF is the application of 
equal-order interpolation for velocity and pressure in standard finite element or fi
nite volume discretization methods. The required additional boundary conditions 
are derived by appropriate extensions of the governing viscous flow equations to the 
boundary. To this end, the momentum equation is employed to directly derive a weak 
pressure potential residual statement with incorporated Neumann pressure BC, while 
the incompressibility constraint on the boundary play an essential role in derivation 
of the Neumann BCs for velocity components. 
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