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Abstract 

This paper reviews common approaches to statistical circuit modeling, and details their 
limitations. A simple, efficient, and generic approach to statistical circuit modeling is presented. 
Backward propagation of variance (BPV) is used to guarantee that the statistical circuit models 
match variations in key device performances. Examples are provided for MOSFETs and BJTs. 

1. Introduction 

This paper reviews some common approaches to statistical modeling, and details their 
limitations. In particular, problems with using process and device simulation (TCAD) for 
statistical circuit modeling will be highlighted. An efficient and accurate method based on 
backward propagation of variance (BPV) is presented. This provides a simple yet 
mathematically rigorous foundation for statistical modeling. 
The scope is statistical models for circuit simulation, in SPICE type simulators [1]. Two 
types of statistical models will be covered: distributional statistical models, characterized 
by means and variances and used for Monte Carlo type simulations; and generic case 
statistical models that give specified variations in key device electrical performances. The 
latter are the normal "case" files used for circuit simulation. There exist different "worst" 
and "best" case models for every distinct measure of circuit performance, circuit topology, 
and selection of device geometries. It is possible to determine "case" statistical models for 
each specific performance/topology/geometry combination [2], but such specific case 
models arc at present not in common use and will not be treated here. 
MOSFET and BJT circuit simulation (compact) models have many parameters, but a small 
number of physical "process" parameters p control device electrical behaviors e. p can 
include oxide thickness, lateral geometry variation, junction depth, doping density (or sheet 
resistance), etc. The process parameter level is the best basis for statistical circuit modeling. 
MOSFET models are based on process parameters, however this is not true for BJT models, 
and mappings from process (and geometry) parameters to SPICE model parameters must 
be developed as a basis for BJT statistical modeling, see [3]. 
The p are separated into two categories, those for which an absolute variation is more 
natural, e.g. flatband voltage SK^ and lateral geometry variation 5AL, and those for which 
a relative variation is more natural, e.g. oxide thickness &T0X/T0X and most other 
parameters, including vertical geometry variations. 
The statistical modeling techniques presented here are based on physical process and 
geometry parameter level models, and use PC (in-line process control) data statistics to 
characterize the process parameter level statistical models. Note that the statistics of p are 
not assumed to be directly measured as part of the PC data, but are computed base on BPV. 
This is a key difference between the techniques detailed here and those reported previously. 
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2. Existing statistical modeling approaches 

2.1. Numerical data fitting 
Numerical modeling techniques have been applied to statistical modeling, in the form of 
principle components analysis [4] and response surface modeling [5]. These approaches 
provide distributional statistical models and could provide case statistical models, although 
no definite method is presented to generate case files. 
The main drawback of numerical approaches is the significant amount of effort required to 
construct the numerical models. E.g. [5] required SPICE model extractions from 100 d.e. 
In addition, process changes are made during the life of a technology, and the confidence 
that the effects of these changes can be quickly and accurately reflected in models is 
significantly greater for physically based models than for purely numerical models. 

2.2. Forward propagation of variance 
Perhaps the most common method to generate statistical circuit models is by direct 
measurement of p as part of PC data. This provides distributional statistical models. 
Generic case statistical models are then defined by ±3a variations in p . Because the 
variations in p propagate through the SPICE models to simulated e this approach may be 
termed forward propagation of variance (FPV). 
There are several significant problems with this approach: 
1. the e(p) mappings are only approximate; 
2. the e(p) mappings are different for different SPICE models; and 
3. different methods for measuring p directly give different values. 
Therefore the FPV approach provides no guarantee about the accuracy of the modeling of 
e, see Fig. 1, and misses the real goal of statistical modeling. Further, introducing ±3o 
variations in p does not generate a known level of perturbation in any e, 

8e, = l^SPk ( 1 ) 

k Pk 
so 5e depends both on the sensitivities and the number of elements in p. Adding a variation 
in some pk is useless if it does not affect c,-, e.g. AL for a long channel MOSFET, and 
introducing ±3o variations in a large number of p leads to a pessimistic value for e( (if the 
sensitivities were 1, ±3o variations in n process parameters gives a ±3jna change in e(). 

2.3. Extreme case data 
Data from either from split manufacturing lots or from TCAD simulations of manufacturing 
extremes can be used to extract extreme case SPICE model parameters. 
Limitations of this approach are: it provides only generic case files, and not distributional 
statistical models; the effort to generate the models is directly proportional to number of 
case files required for circuit simulation; and such models cannot be easily re-targeted after 
process changes are made. 
The most significant drawback is that variations, in either split lots or TCAD simulations, 
are done in only a small number of the p that control device electrical behavior, and the 
amount of each variation is only an estimate, because exact statistical data on the process 
parameters is not known. It is misdirected to spend significant effort to generate models that 
only roughly approximate the observed variations in device electrical performance. 
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Figure 1: Errors involved in forward propagation of variance. 

3. BPV for generic case statistical modeling 

IC design requires generic case files that embody ±3o variations in measures of circuit 
performance ec (speed, power, phase margin, etc.). ec are determined by the device 
performances e, threshold voltage, drive current, transconductance gm, output resistance 
rQ, etc. The BPV approach recognizes that accurate modeling of the distribution of e is 
paramount for circuit modeling, and the p should provide an indirect, not direct, method 
for modeling e properly, see Fig. 2. 
The BPV procedure for generating generic case statistical models is: 

1. develop process and geometry mappings for the device being modeled 
2. extract model parameters from a "representative" wafer 
3. define e that make p observable (see the next section for how to do this) 
4. obtain distributional information on e 
5. define target e for each simulation case based on how they affect circuit performance 
6. optimize p to minimize lie - e, Jl where ||...|| is the Euclidean norm 

4. BPV for distributional statistical modeling 

Applying propagation of variance to the sensitivity relation in eq. (1) gives 

2 (def\2 2 
(2) 

which defines a set of linear equations that relate the variances of e to the variances of p. 
The sensitivities in cq. (2) are computed by differencing, and the variances in e are 
specified, as the distributions of the PC data. Eq. (2) can therefore be directly solved for the 
variances of the process parameters, hence the name backward propagation of variance, 
from e to p rather than from p to e, sec Fig. 2 
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Figure 2: Statistical characterization using backward propagation of variance. 
The p must be mathematically observable in e. This means that the matrix of squared 
sensitivities in eq. (2) must be well conditioned, at the very least nonsingular. 
Consequently, the e used to statistically characterize the /; for each type of device being 
modeled must be selected to make the p observable. With a physical understanding of the 
way the p affect device behavior this is generally easy to do, and e suitable for MOSFET 
and BJT modeling are detailed below. A major feature of the BPV approach is being able 
to determine whether the selected e are sufficient for statistical modeling. 
Some p can be characterized directly, and are thus FPV parameters. Entries in cq. (2) that 
are FPV are subtracted from the left hand side variances. If the specified variances of the 
FPV variables are inconsistent with the variances of e (as can happen for Tox for 
MOSFETs), the left hand side of cq. (2) becomes negative, which is clearly absurd. It is a 
significant feature of the BPV approach that it can detect such inconsistencies. 
Eq. (2) is based on linearization and the assumption that the p and e are normally 
distributed. These are reasonable approximations. However, slight nonlinearities imply that 
the differencing used to compute the sensitivities depends on the perturbation range for 5/>. 
±3o" perturbations are used. Given that the variances of p are not known a priori eq. (2) is 
solved iteratively for a self-consistent set of variances and sensitivities. 
Quantities (both p and e) that vary by some ratio rather than by some additive amount, e.g. 
BJT P = Ic/Ib which can vary from say 0.5 to 2.0 times its nominal value, should be 
transformed logarithmically prior to application of the BPV procedure. 

5. MOSFET example 

The key p that control the variation of MOSFET electrical behavior are Tox, Vjb, channel 
length reduction A t , channel width variation &w, effective substrate doping Nb, low field 
mobility \xQ, and a parameter Vtl that models the change in threshold voltage with 
decreasing channel length, and depends on junction depth, profile shape, etc. For most 
MOSFET models there is a direct correspondence between these p and the SPICE model 
parameters s. For some s mappings may need to be defined from p, e.g. 
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VthO=Vfb + *B + 
J21^siNb ox*i~*~Si b n— 

- ^ % 
(3) 

Here Tgx is used directly, by FPV. For brevity, variations in Aw and Nb will be ignored. 
Statistical modeling of V « , A^, \iQ, and V([ are based on BPV. These p are observable 
in wide/long and wide/short threshold voltage (Vtr and Vts) and saturated drain current 
Udr and Ids). If the body effect is included, the statistics of Nb can be characterized. 
Fig. 3 shows characteristics of generic case statistical models generated by optimizing p to 
model ±3 rj limits in the above e, for a PMOS device in a 0.5u,m BiCMOS process. Clearly 
both g and rQ track with the cases, although they are not explicitly included as part of e. 
Note that the model limits for e exactly match the ±3 a fab PC limits. 
The BPV equations (with appropriate normalization) are 
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where the variation caused by T is subtracted from the left hand side, as it is an FPV 
parameter. Because of normalization and the weak dependence of some c{ on pk many 
entries of the matrix in eq. (4) are close to either 1 or 0. E.g. in the first row of the coefficient 
matrix 3V(r/3V « = 1 and all the other sensitivities are close to 0, and in the second row 
the first entry is small, (.V-Q/I^^^/^Q ~ 1, and the remaining entries are close to 0. 
(One of the reasons for normalizing quantities for which a relative variation is natural is that 
it leads to good conditioning, and stable numerical solution, of the BPV equations). 
Fig. 4 shows Monte Carlo simulations from distributional statistical models characterized 
by the BPV approach, for a 0.5u.m BiCMOS process. Also shown are generic case files (at 
the corners of the bounding hexagons, additional cases to the best and worst case files of 
Fig. 3 are included, to better model the observed correlations in, and distribution of, PC 
data). Again, note the model limits for e exactly match the ±3c fab PC limits. 

6. BJT example 

The key p that control the behavior of vertical NPNs are the effective base doping Nbettt 
effective base width wb, variation in emitter size A, and recombination/generation 
lifetimes, here incorporated into effective non-ideal and ideal base-emitter current density 
parameters Jben and Jbei. BJT behavior over geometry can be modeled well by including 
area, perimeter, and corner components for most SPICE model parameters, although 
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Figure 4: Monte Carlo (+) and generic case (hexagon corners) MOSFET models. 

resistance modeling requires more complicated analyses. For a single emitter BJT with 
emitter width and length of we and lc, the emitter area, perimeter, and the relative pinched 
base sheet resistance are 

Ac = (/ + A)(u> + A), Pe = 2U + wc + 2A), 
SP. she 1 
Psbe Wbeff/Nbeff)$wb/Wb) 

(5) 
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Representative mappings for VBIC parameters are then, following the approach of [3], 

!S = VSA
Ae + hpPe + hc^sbc^sbc ( 6 ) 

hEN = ^IBENAAe + IBENPPe + IBENC^Jbet/Jben "' 

!BEl = (IBElAAe + IBEIPPe + IBElC^Jbe/Jbei (8) 

J _ = VsAAe/VEFA + ISPPe/VEFP + !SC/VEFc) 1 ( 9 ) 

VEF VSA
Ae + ISPPe + 1Sc) $P she'? sbc) J ^ T ^ c 

CJE = (CJEAAe + CjEPPc + CJECV ^sbc^sbe (10) 

vb 
T„ = 

WFAlSAAe + TFphpPe + Tpchc)^ ^ 
F VSA

Ac + ISPPe + ISc) KWb 
(ID 

Note that not all area, perimeter, and corner components are needed for every parameter for 
every technology, and the above mappings are asymptotically correct as w and l£ increase 
[6]. In eq. (9) an extra process parameter, the collector doping Nc, is included, but for 
simplicity is considered fix for the example presented here. 
The 5 BJT process parameters can be observed in the following 5 measures of BJT electrical 
performance e: the collector current / measured in the ideal region; current gains PfJ and 
P(. measured in the non-ideal and ideal regions, respectively; extrapolated Early voltage 
VA (note that this is significantly different from the Early voltage SPICE model parameter 
[6]); and the unity-gain cutoff frequency fT, measured at relatively high current density. 
Fig. 5 shows how the p affect the e for BJTs. Note that there is not a one-to-one 
correspondence between the p and the e. However, because the p are observable in the e, 
the BPV procedure allows numerically robust characterization of the p. For BJT analyses, 
in contrast to MOSFETs, there are no FPV parameters. 

Figure 5: Dependencies between p and e for BJTs (dashed lines are weak dependence). 

Fig. 6 shows results from BPV statistical characterization, for a double poly emitter NPN 
in a 0.5um BiCMOS technology. Here only best and worst case models are defined, in 
terms of ±3CT for each of the measures of device electrical performance e. As with the 
MOSFET example, the model limits for e exactly match the ±3 a fab PC limits. 
The expected underlying physical correlations between the e are apparent in Fig. 6. Early 
voltage is roughly inversely proportional to the collector current, whereas current gain and 
unity-gain cutoff frequency are roughly proportional to the collector current. These 
correlations arc explicit in the physically based process parameter and geometry mappings 
given above. 
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Figure 6: Monte Carlo (+) and generic case (solid lines) BJT models. 

7. Conclusions 

The BPV approach to statistical circuit modeling is completely generic, and has a rigorous 
mathematical foundation. At Motorola a single program is used to generate statistical 
circuit models for all devices, MOSFETs, vertical NPNs, lateral PNPs, etc., even though the 
models and associated process and geometry mappings are very different. The program 
runs in several minutes on an engineering workstation, generates both distributional and 
generic case statistical models, and guarantees that the resulting models accurately embody 
the measured distributions of device electrical performances. 
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