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Abstract 
This paper reviews the scattering theory of semiclassical charge carrier transport in 
semiconductors. The derivation of the underlying equations from the Boltzmann equation, 
numerical solution to solve the Boltzmann equation in devices, and the application ot 
simple versions of scattering theory which provide insight into devices arc reviewed. 

1. Introduction 

Scattering theory provides an alternative to the more common descriptions of carrier 
transport. At a simple level, it provides insights that are complementary to traditional 
approaches. At a numerical level, it provides new methods for simulating carrier transport. 
At a different level, it describes quantum transport in mesoscopic devices [1]. Because of 
this generality, it may provide a convenient method for easily moving between different 
levels of the device simulation hierarchy and for interpreting detailed simulations. Our 
objective in this presentation is to survey the scattering theory of transport and its 
application to semiconductors. 

2. Multi-Flux Formulation of the Boltzmann Equation 

The Boltzmann equation is typically formulated in terms of the carrier distribution function, 
Jlr, p, t), but it can also be expressed in terms of the flux distribution, j = l)/as, 

dx opx 

where C is the collision operator and for simplicity we have assumed steady-state, 
nondegenerate conditions and spatial variations in one dimension. Scattering moves 
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carriers between momentum states. The electric field also moves carriers in momentum 
space, so the field and collision operators can be combined [2]. If we then discretize the 
Boltzmann equation into 2M bins in momentum space (M with velocities along the positive 
x-axis and M along the negative x-axis), then eq. (1) can be expressed as 

£UM)=[rjAM). ® 

where \jx(x)) is a 2M x 1 vector in momentum space representing the flux carried by each 
bin. The elements of |TX] are inverse mean-free paths for scattering. The diagonal 
elements represent the probability per unit distance that carriers will out-scatter to other 
bins, and the off-diagonal elements describe in-scattering. Equation (1) is similar to the 
form commonly used in neutron transport [3]. The difference is that for semiconductors, 
the differential backscattering matrix, [rx], includes the effects of the electric field as well 
as the scattering processes. As discussed in Sec. 4, numerical solution procedures used in 
neutron transport can be generalized to solve eq. (2) for semiconductors. 

Equation (2) is readily generalized for spatial variations in two or three dimensions [2]. In 
the general case, the flux vector in momentum space, ^(x)), becomes | j(r)), where each 

element is a vector in real-space whose direction is determined by the local energy band 
structure. The spatial derivative is replaced by a diagonal directional derivative matrix 
representing the derivative in the direction that each of the 2M fluxes is traveling. 

Equation (2) assumes a very simple form when the flux vector is represented by a single 
flux moving in the positive direction and another one moving in the negative direction, then 

4 r J L-« jsJLrJ' 

where a and (3 are inverse mean-free-paths for backscattering. In the absence of an electric 
field, a = P, but electric fields introduce asymmetry. The M=l approach was introduced 
by McKelvey et al. in 1961 [4], and they showed that this "flux method" provided an 
alternative to the more conventional continuity and drift-diffusion formulation of carrier 
transport. An additional advantage is that ballistic transport can be treated easily. Equation 
(2) and (3) are valid in steady-state, but time dependence is readily included [5]. 
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3. The Boltzmann Equation as a Drift-Diffusion Equation 

By pairing each flux moving in one direction with one moving in the opposite direction, we 

can re-cast eq. (2) into a second order equation. It may come as a surprise that the result 

can be written in drift diffusion form as 

\JxM) = q[^MxU + q[DJ^ (4a) 

^ ^ - 9 [ G „ ] | n ( , ) > + ,[aj |W>. (4b) 
ax 

where |n(je)> represents the particle density in each of the M bins and |7,(x)) represents the 

net x-directed current carried by each bin. The M x M diffusion matrix, [D„], describes 

particle scattering, the matrix [uxx] describes the influence of the electric field as well. The 

matrices [Gxx] and [ccxx] describe the "generation" of particles in each bin due to scattering, 

the electric field, and recombination-generation processes. 

The connection between the one-flux equations and the drift-diffusion equations was first 
noted by Shockley in 1962 [6]. Since the one-flux equations describe both collision-
dominated and ballistic transport, we conclude that, at least under some conditions, the 
drift-diffusion equation may be used for ballistic transport. This fact was recently noted by 
Hansen in a study of diffusion across a thin base [7]. Equations (4a) and (4b) may also 
prove to be a useful way to formulate the Boltzmann equation for numerical solution. In 
the general case of spatial variations in two or three dimensions, the transport matrices 
become three by three tensors with each element an M by M matrix, and the spatial 
derivative becomes a directional derivative operator [2]. The multi-mode drift-diffusion 
equation also has pedagogical value; it indicates that solving the Boltzmann equation is 
equivalent to solving M coupled drift-diffusion equations. The increase in computational 
effort is easy to appreciate. 

4. Numerical Solutions 

The one-dimensional multi-flux equations have been solved by two different methods. One 
simply involves integrating eq. (2) across discrete elements in a nonuniform grid. 
Upwinding is essential to maintain positive fluxes, and careful discretization is necessary to 
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prevent unreasonably small spatial elements. Since the electric field acts like a scattering 
mechanism, strong electric fields result in very short effective mean-free-paths. A simple 
finite difference approximation to eq. (2) is restricted to spatial elements that are thinner 
than one mean-free-path, so higher order discretizations must be used where the electric 
field is large. 

The scattering matrix approach is an alternative method to solve the first order equations [8-
10]. Rather than working with differential elements as in Fig. la, we use slabs (in ID) of 
finite thickness as illustrated in Fig. lb. Equation (2) is integrated across a slab of finite 
thickness. In practice this is done by Monte Carlo simulation. One simply "shoots" 
electrons at a slab containing a given electric field and set of scattering processes. Electrons 
are tracked until they leave the slab. By taking the ratio of the number of electrons exiting 
in a given bin to those injected, the emerging fluxes can be related to the incident fluxes. 
The final result can be expressed as 

"!/(*+ <k))" 

. \rw) . 

where the scattering matrix, [S], relates the fluxes emerging from the two faces of the slab 
to the incident fluxes. These scattering matrices are pre-computed and stored in a library. 
Devices are then simulated by cascading pre-computed scattering matrices. (In the neutron 
transport community, this approach is known as the response matrix method [3]). 

The use of pre-computed scattering matrices has a number of advantages, and some 
limitations. Monte Carlo simulation provides an easy way to integrate across a slab several 
mean-frce-paths thick (but some of this advantage is lost because the field and collision 
operators are typically split). Pre-computing the matrices and storing them provides some 
computational efficiency. On the other hand, the memory requirements can be quite large 
and nonlinear processes, such as electron-electron scattering, are difficult to handle. 
Nevertheless, ID solutions have provided a good deal of insight into important issues for 
transport in devices [11-13]. In addition to electronic devices, scattering matrix simulations 
have also been applied to optoelectronics where carrier dynamics are coupled to the phonon 
and photon populations [14]. 

J21 °22. 

|rw) 
\j-(x + dx))\' 

(5) 
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j+(x) j+(x + dx) j+(x) f(x + toc) 

fix) Q El j~(x + dx) j-(x) j~(x + Ax) 
Fig. la The differential formulation of the 

1-flux equations. 

Fig. lb The discrete formulation of the flux equations. 
Incident fluxes (heavy arrows) arc related to 
emerging fluxes by [S]. The slab may thick 
compared to a mean-frcc-path. 

The scattering matrix approach can be applied to two-dimensional transport as well. As 

illustrated in Fig. 2, a device is discretized into square elements, and each element has 

fluxes incident from the top, bottom, left and right. The emerging fluxes are, again, related 

to the incident fluxes by a scattering matrix, 

(6) 

Each element of the 4 by 4 scattering matrix is an M by M matrix. Techniques for 

evaluating scattering matrices by Monte Carlo simulation and for solving for the flux 

distributions within a device are analogous to those employed for ID analysis, but the size 

of the problem expands substantially. 
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Fig. 2 Illustration of how the scattering matrix approach is applied to two dimensional devices. At the 
left we show how a device is discretized into square elements and at the right, how the emerging 
fluxes arc related to the incident fluxes. 
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5. 1-Flux Scattering Theory 

One flux (M=l) scattering theory proves to be a useful way to view ultra-small bipolar 
transistors [15,16] and MOSFETs [17,18]. For example, the saturated drain current of a 
MOSFET can be expressed as [17] 

'DM, = c M w i V 
l+Jt 

(Vos-Vr), (7) 

where Re is the channel reflection coefficient and ur the thermal velocity of electrons 
injected from the source. As shown in Fig. 3, thermal carriers are injected over the source-
to-channel potential barrier (whose height is modulated by the gate voltage) into the 
channel, and a fraction, Re, backscatters. For long channel devices, eq. (7) reduces to the 
conventional expression, but it also provides a clear prediction for the ballistic limit. If the 
channel is ballistic, the maximum drain current is set by the thermal injection velocity from 
the source (about 107 cm/s for nondegenerate electrons in silicon at room temperature). 
The channel reflection coefficient is determined by a region of the channel very close to the 
source [17]. Velocity overshoot, which is strongest near the drain, enters indirectly 
through the self-consistent electric field. Because the electric field is low near the source 
where the backscattering that controls Re occurs, electrons are near thermal equilibrium, 
and Re can be easily estimated from the near-equilibrium mobility. Scattering theory 
provides a simple, physical explanation for why the near-equilibrium electron mobility 
continues to be a physically meaningful parameter in a very small MOSFET. 

Fig. 3 MOSFET energy band diagram with 
injected and scattered fluxes 
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In the linear regime. ID (for a nondegenerate channel) can be written as [18], 

\l-Rc){VGS-VT)VDS, (8) /C = WQ 
\Jk,Tlq. 

which shows that in the ballistic limit, RC = 0, there is still a finite channel resistance. This 

result is analogous to the e2/h contact resistance well-known for mesoscopic devices [1]) 

One flux theory also provides a useful way to interpret detailed simulations. For example, 
Fig. 4 shows the average velocity vs. position along the channel of a MOSFET as 
computed by Monte Carlo simulation. Strong velocity overshoot occurs, but the critical 
velocity is at the beginning of the channel. The ratio, (v(0))/vT, is a drive current figure 
of merit for the device. According to scattering theory, thermal electrons are injected into 
the channel, and those that backscatter have only experienced a potential drop of about 
kBT/q, so the backscattered electrons are a near-thermal population too. The result is that 
the critical velocity at the beginning of the channel can be related to Rc by 

aJvm=t±i, (9) 
vT l + Rc 

If there were no backscattering from the channel, then Rc would be zero, and the average 
velocity would be VT, the thermal injection velocity O=107 cm/s for a thermal equilibrium 
hemi-Maxwellian). The fact that the velocity at the beginning of the channel in Fig. 2 is 
below 107 cm/s indicates that backscattering is occurring. Various device designs should 
be compared in terms of Rc if drive current is the parameter of interest. 

6. Summary 

Scattering theory provides a useful way to think about carrier transport in semiconductors. 
It has the ability to treat transport from an analytical (compact model) level to a full 
Boltzmann level. It may provide useful, new numerical methods for simulating carrier 
transport. It certainly provides useful new insights into carrier transport and device 

physics. 
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