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Abstract 

The space and time dependent electron Boltzmann transport equation (BTE) 
is solved sclf-consistently with the Poisson and transient hole current-continuity 
equation. A transient Spherical Harmonic expansion method is used to solve 
the BTE. By this method we can efficiently solve the BTE in the RF regime to 
observe how the complete distribution function responds to a rapid transient. 
Calculations on a BJT, which give the time dependent distribution function 
over a large energy range 0-3eV, throughout the device, as well as average 
quantities, require only 40 minutes CPU time on an Alpha workstation. 

1. Introduction 

The Spherical Harmonic method has been shown to be a viable approach for de­
vice simulation, especially when the details of the distribution function are sought[l, 
2, 3, 4]. It has been used for steady state 2-D MOSFET simulation where excel­
lent agreement with experimental values for drain current and substrate current have 
been obtained[5, 6]. Recently, it was shown to give excellent agreement with Monte 
Carlo calculations in the details of the distribution function for very deep submicron 
structures, while being orders of magnitude faster[6]. Until now, however, Spherical 
Harmonic based device simulation was limited to the steady state. In this work we 
extend the Spherical Harmonic method to the time-dependent situation. This ex­
tension allows one to examine how the distribution function, as well as its moments, 
respond to ultra-fast transient phenomena, like those which occur in very high fre­
quency RF applications. We apply the method to provide detailed analysis of B J T 
transient behavior. 

2. Transient Model and Numerical solution 

To investigate how the distribution function responds to rapid variations of terminal 
voltages, we use a mathematical/physical device model which consists of the Poisson 
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Equation, the time-dependent Boltzmann Transport Equation for electrons, and the 
time-dependent Current Continuity Equation for holes. 

V?tf(*) = f [/ /(k, ?, t)dk - p(F, t) + D(T) 

a / ( g ' t
k , t ) = ̂ e • Vr/(k, r, t) - \Vr^(F) • Vk/(k,r,t) + 
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d-^- = Vr • [W ( r , t)Vr0(r) + ^PV(Vrp(r, t)] - R{4>, n, p) (3) 

f{r,k,t) is the electron distribution function; <j>{r) is the potential; p(r,t) is the 
hole concentration; D(r) is the net doping concentration; R{n,p) is the net hole 
recombination rate; Vt = KuT/q is the thermal voltage; e, is the dielectric constant 
of silicon. For the collision term, we explicitly evaluate the scattering integral using 
Fermi's Golden Rule and deformation potential theory. 
In order to couple momentum space, real space and the time domain together, we first 
discretize these three equations in momentum and real space domains by a Scharfetter-
Gummel-type discretization technique[5]. We then use a backward Euler method 
to discretize the time domain implicitly. The right hand side of Eqs (2,3) can be 
presented as BTE(f{f,k,t)), Jp{p{r,t)), respectively. According to the backward 
Euler method, Eq(2,3) can be written as, 

/(?,£,t)^/(?,g,t)w = ( O T W ? i £ | t ) ) ) ^ ) (4) 

P ( r , t )^^- P ( r , t )^) = ( J p ( p ( F | t ) ) r i ) {5) 

At is time step; /(f, k, t)<*> and p(f, <)(fc) are self-consistent solutions of kth step. We 
solve the (k + l)'th time step iteratively with various approaches including of the con­
jugate gradient method. Due to the way we discretize the equations, f(f, k, t)(k+1'/At 
helps to yield a diagonally dominant system. This facilitates the use of a wide range 
of time-steps for stable analysis of the transient regime. 

3. Results 
We use the above model to perform a transient simulation of a deep submicron BJT 
with a base of only 0.05/zm. The doping profile of the BJT is shown in Fig 1(a). We 
first obtain a steady state solution of Eqs (1-3) for the case of VE = 0, VD = 0 and 
Vc = 3V. Since this is a ID BJT case, we use a fixed VB as a boundary condition. 
We then apply a step bias VDE, which rises from OV to 0.75V in 5 psec to turn on the 
BJT and use Eqs (1,4,5) to obtain transient solution. As forward bias VDE increases, 
the decrease in the base-emitter junction field is shown in Fig 1(b). 
In Figs 2(a-c) we show the evolution of the electron energy distribution from time 
t = 0tot = lOpsec, while the 0.75V bias, with rise time of 5psec, is applied to the 
base. The 3D figures show the trend of the whole device. It can be seen from the 3D 
figures that electrons in the collector region change from being close to equilibrium 
to a highly heated condition in approximately lOpsec. We also show the transient 
distribution function at the particular location X = 0.2 /mi, which is the hottest point 
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Figure 1: (a) Doping profile of BJT used in transient simulation, (b) Electric field 
changes for each time step. 

in device, and compare the results to the quasi-static case. It is interesting to note 
that for VijB=0.3K (Fig. 2a), the BJT is still off, so right hand side device is still 
cool, and there are less electrons in the high-energy tail of the distribution function 
than would be predicted by the quasi-static calculation. 
When VBE first attains its maximum value (Fig. 2b), we see that the transient 
distribution function has overshot the quasi-static case. Finally, at t = lOpsec, which 
is 5psec after VBE reaches its maximum, the distribution has lost some of its energy to 
the lattice, and the transient distribution relaxes back to its quasi-static value (Fig. 
2c). 
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Figure 2: Evolution of the electron energy distribution and comparison with quasi-
static results, (a) t=2 psec, VuE=0.3v, BJT is still off. The number of hot electron 
at right hand side device is still small, (b) t=5 psec, VDE=0.75v, BJT is on suddenly. 
Hot electrons emerge at right hand side device, (c) t=10 psec, VBB=0.75V, those 
over-heated electrons come back to steady state. 



45 

Integrating the transient distribution function, we can observe the propagation of elec­
trons from emitter to collector. When the voltage barrier decreases between emitter 
and base, electrons can not arrive at the collector instantly. 
Fig. 3(a) shows the population of electrons near the collector region is less than it 
would be in the quasi-static case. When reaching maximum base-emitter bias, a few 
more time steps are required to completely transport electrons from emitter to the 
collector to establish a steady state. In Fig. 3(b) we show the average energy transient, 
which is obtained by evaluating the energy moment of the transient distribution 
function. It shows that during ramping up time, once we start to increase the bias, 
average energy in the transient case is almost always higher than it is in quasi-static 
case. This is because during the transient process electrons will first absorb energy 
from the field before they loss it to dissapative scattering processes. This results in 
an energy overshoot. Once we stop increasing VBE, electrons get a chance to cool 
down and settle to their steady state value. 
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Figure 3: (a) The evolution of electron concentration and comparison with each quasi-
static point, (b) The evolution of electron average energy and comparison with each 
quasi-static point. 
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