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Abstract 

In this paper we present the results of applying a new algorithm to improve 
the quality of Delaunay triangulations for the numerical simulation of semicon­
ductor devices using the control volume discretization method. The resulting 
triangulations are Delaunay triangulations, whose boundary triangles (triangles 
with at least one edge on the boundary or on a material interface) do not have 
obtuse angles opposite to any boundary or interface edges. In addition, the 
algorithm guarantees that the minimum and maximum angles of the triangles 
are bounded (minimum angle greater than or equal to 30° and maximum angle 
less than or equal to 120°), with the exception of a few triangles related with 
small angles of the boundary geometry. 

1. Introduction 

The numerical solution of partial differential equations (PDEs) is invaluable in design 
and optimization in many fields of engineering. The spatial discretization (mesh) 
of the structure to be simulated, i.e. its subdivision in cells, is key to the accuracy 
of the computed solution. An appropriate mesh should fulfill several requirements. 
First, it must provide a reasonable approximation of the geometry to be modeled, in 
particular of its boundary and internal material interfaces. Second, it is extremely 
important to accurately approximate all internal quantities relevant to the solution 
of the PDEs. Third, each cell must fulfill certain geometric constraints imposed by 
the numerical integration method: if the PDEs are solved with the finite element 
method, no angle must be smaller than some bound supplied a priori. However, if 
the equations are solved using a control volume discretization method(cVM)[l], the 
center of the smallest circumcircle that surrounds each boundary element must be 
inside the region of the element [2, 3]. For two dimensional geometries (2-D) this 
means that the angle opposite to a boundary edge must be a nonobtuse angle. 

The CVM is very popular in the numerical simulation of semiconductor devices. In 
2-D, both triangulations and mixed element meshes have been used. A review of 
previous work on this area can be found in [4, 5]. A more recently approach is the 
one presented in [0] based on the sphere packing technique [7]. 

This paper presents a new algorithm to improve the quality of Delaunay triangula­
tions for the control volume discretization method which extends the Lepp-Delaunay 
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algorithm introduced by Rivara in [8]. The algorithm not only eliminates obtuse an­
gles opposite to boundary or interface edges but it guarantees that the minimum ana 
maximum angles of the most of the triangles are bounded (minimum angle greater 
than or equal to 30° and maximum angle less than or equal to 120°). Then, this Kino 
of meshes are also appropriate for the finite element method and for the combination 
of both methods. 

2. New Algorithm 

The construction of the good quality (constrained) Delaunay triangulation consists of: 
(a) The generation of an initial constrained Delaunay triangulation (which essentially 
uses the polygon vertices), and b) the use of an Lepp-Delaunay algorithm wnicii 
improves the quality of the mesh so that the minimum angle is greater than or equal 
to 30° [8]. The basic Lepp-Delaunay improvement strategy uses the Longest-bdge 
Propagation Path of the target triangles (to be either refined and/or improved in 
the mesh) in order to decide which is the best point to be inserted, to produce a 
good-quality distribution of points. This strategy is repeatedly used until the target 
triangle is destroyed. An special boundary treatment technique is also used to avoid 
the insertion of undesirable points in the neighborhood of the boundary. 
The step designed to eliminate boundary obtuse triangles (triangles with the obtuse 
angle opposite to a boundary or an interface edge) of polygonal regions considers three 
cases: (a) triangles with only one boundary edge which is opposite to an obtuse angle 
(1-cdge boundary obtuse triangle), (b) triangles with two boundary edges and one of 
them opposite to an obtuse angle (2-edge boundary obtuse triangle), and (c) triangles 
with three boundary edges. The case (a) is solved by inserting the mid-point at the 
boundary edge. Since the obtuse angle is smaller than or equal to 120°, the insertion of 
only one point is required. Some diagonal swapping might be necessary. For the case 
(b) and since the insertion of a point on the longest-boundary edge keeps the obtuse 
angle in the new triangle with two boundary edges, we propose to insert two points 
so that the new boundary triangle with two boundary edges is isosceles. Since the 
boundary constrained angle (angle defined by the two boundary edges) can be smaller 
than 30°, the previous strategy can generate a new 1-edge boundary obtuse triangle 
with an obtuse angle greater than 120° . Then, several edge midpoint insertions 
might be required to eliminate this new boundary obtuse triangle. A triangle with 
three boundary edges (case (c)) is a particular case. Depending on the angles of the 
triangle, one or two isosceles triangles with two boundary edges are generated. 
The previous process can also be applied to handle interface obtuse triangles. For 
obtuse triangles with one interface edge the same strategy as for case (a) is applied. 
For interface triangles with two or more interface edges adjacent to other triangles 
of the same type, we also propose the generation of isosceles triangles for the new 
triangles which keeps two interface edges. A complete description of the algorithm 
and its properties can be found in [9]. 

3. Results and conclusions 

The following two examples illustrate the practical behavior of the algorithm. Table 1 
presents a summary of the geometrical information of the meshes generated for the 
examples shown in Fig. 1 and Fig. 2. The left value of the columns with two values was 
computed considering only the triangles that are improved using the Lepp-algorithm, 
and the right one was computed considering the triangles that are 
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vertices 
triangles 
min. angle 
aver, min. angle 
max. angle 
aver, max, angle 
b-obtuse triangles 

Delaunay 
100 
104 

0.84 
15.73 

172.49 
111.87 

Example 1 
Lepp-Del 

272 
434 

30.06-14.99 
43.15-16.87 

115.17-129.32 
79.80-124.87 

Final mesh 
291 
463 

12.40-14.99 
42.39-16.87 

126.82-82.50 
80.49-82.56 

0 

Delaunay 
19 
18 

5.19 
25.91 

168.69 
105.85 

10 

Example~2~ 
Lepp-Del. 

65 
80 

30.34-10.30 
43.34-20.52 

112.61-116.56 
80.29-100.77 

Final mesh 
77 
94 

17.91-10.30 
41.88-20.52 

113.62-90.00 
80.78-86.32 

Table 1: Empirical information of the examples 1 and 2 

Figure 1: Example 1 (a) Geometry of the domain (b) Constrained boundary Delau­
nay triangulation (c) Triangulation after applying the Lepp-Dclaunay algorithm (a) 
Triangulation after applying the strategy to eliminate boundary obtuse angles 

(a) (b) (c) (d) 

Figure 2: Example 2 (a) Geometry of the domain (b) Constrained boundary Delau­
nay triangulation (c) Triangulation after applying the Lepp-Delaunay algorithm (d) 
Triangulation after applying the strategy to eliminate boundary obtuse angles 
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boundary obtuse triangles with two boundary or interface edges whose constrained 
angle (angle defined by two boundary or interface edges) is less than 30° . In practice, 
the 2-dimensional triangulations obtained after applying the Lepp-Delaunay strategy 
are size-optimal [10]. The number of points inserted after the elimination of boundary 
obtuse angles is 0{N.bot), where N.obt is the number of boundary obtuse triangles. 
Finally, it should be pointed out that the final mesh (without boundary and inter­
face obtuse triangles) is a Delaunay triangulation also for the triangles lying at the 
boundary and material interfaces (not a constrained Delaunay trianglulation). 
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