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Abstract 

The spherical harmonics (SH) are applied to realize the scattering matrix 
method of carrier transport modeling. Using the spherical harmonics has the 
advantage of reducing the matrix by approximately a factor of 10 less than the 
previous discrete basis approach[l]. To realize the approach, new spherical-
harmonic functions are defined to overcome difficulties associated with orthog­
onality. The scattering matrix is calculated using Monte-Carlo(MC) techniques 
to populate the new basis functions. As a initial step towards demonstrating 
the accuracy of the new mathematical formulation, we calculate the electron 
energy distribution functions for different homogeneous fields. Wc also calcu­
late the space-dependent average energy and velocity for a step electrical field, 
and show agreement with Monte Carlo simulations. 

1. Introduction 

In this work we show how to combine the Spherical Harmonic and Scattering Matrix 
approaches of semiconductor modeling in such a way as to take advantage of many 
of the attributes of both methods [1, 2, 3, 4, 5]. 

2. Theory and Realization 

In the 1-dimensional Scattering Matrix method, the device is divided into thin slabs. 
Modeling is then achieved by analyzing the effect the electric field and scattering 
have on the electrons in each slab. This is realized by partitioning the current into 
flows which are into and out of the slab from either side. Details of the current in 
momentum space in each slab are then obtained by further dividing the flow into 
numerous orthonormal components, and writing the current in terms of a flux vector. 
Transport through the slab can be described mathematically by operating on this 
flux vector with the Scattering Matrix. The flux vector can be expressed in terms of 
virtually any orthonormal basis set. The physical details of carrier flow in momentum 
space can then be explored by determining the flow associated with the individual 

mailto:zyhan@glue.umd.edu
mailto:neil@glue.umd.edu


178 

constituent basis functions. The most direct method to resolve the flux is with a 
discrete momentum space basis [1,2]. Such a discretization can yield accurate results, 
but has the disadvantage of requiring considerable memory. 
To overcome memory problems, we express the angular dependence of the flux vector 
in terms of continuous Spherical Harmonic basis functions. This is achieved by first 
expressing the flux function F+(k,0) as the product of two independent functions: 

F?{k,0) = n{k)G{0) (1) 

For the variable k we directly discretize on a uniform mesh, which assumes the or­
thogonal basis is composed of unit pulse functions /tj(fc), which are defined by 

M*>={s iti^t+^k ® 
The function n{k) is thus given by 

/c(*) = 5></i,(fc) (3) 

where a* is the coefficient of the unit pulse function hi(k). 
For the angular dependence we use a revised Spherical Harmonic-type expansion. This 
revision was necessary because otherwise orthogonality would force all SH coefficients 
with I > 0 to be zero, and not allow higher order modes to be populated. Wc 
overcome this obstacle by incorporating the weight function into the basis function. 
The expansion for 0(0) then becomes: 

0(0)= £ m(0) Q<0<1 (4) 
1=0,2,.. Z 

Where we have defined the new Spherical Harmonic-type function Pi{0) as 

Pl(0) = Pl(0) y/{21 + 1) Bin 0 (5) 

Pi is an expansion coefficient, and Pi(0) represents the standard Spherical Harmonics. 
The flux function, incident on the slab from the left F+(k,0), in terms of the revised 
Spherical Harmonics becomes 

Fx
+(k,0) = 'E'£Cpii(k)Pl(0) O < 0 < ^ (6) 

where Cft = a,/?,+. To fully describe the system, we will also have a flux F~+dx(k,0) 
incident on the slab from the right, a flux F~(k,0) transmitted to the left, and a flux 
Fx+dx(hi0) reflected to the right. These other 3 flux functions relative to the slab 
have analogous definitions. The goal of the analysis is to determine the expansion 
coefficients C«, and thus the flux function. To do so, we first must determine the 
scattering matrix. 

The scattering matrix is determined by forcing .ill the incident particles to be in 
one particular mode, and then determining the modes of the particles which arc 
transmitted and reflected from the slab. This is illustrated in Fig. 1. The scattering 
matrix is constructed by performing such a calculation for each incident mode. 
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Figure 1: The Scattering of particles from a certain il mode and the transmitted and 
reflected particles fluxes of a specific momentum magnitude as a function of angle. 

Once the scattering matrix is determined, the coefficients and thus the flux vectors 
are ascertained by solving the following equation iteratively. 

£)-<*>(!) a 
(7) 

After calculating the flux vectors, the distribution function can be readily obtained 
by dividing the flux by the momentum dependent velocity. 

3. Results 

As an initial demonstration of the approach, we used the method to solve the BTE 
for various homogeneous electric fields ranging from lkV/cm to 200kV/cm. We then 
compared the results to Monte Carlo calculations and found excellent agreement for 
all cases (Fig.2). We also compared the results of the new Spherical Harmonic basis 
with the previous descrete approach. We see in Fig.3 that the two methods agree. 
However, the discrete approach requires a 10 times larger matrix. By cascading 
scattering matrices, we calculate the space-dependent average energy and velocity for 
a step field. In Fig.4 we show agreement with MC for average energy and velocity, 
including the effects of overshoot. 
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Figure 2: Distribution functions for electric fields of (a) lkV/cm, ^kV/cm and 
{b)7bkV/cm,100kV/cm,200kV/cm showing agreement between SH-SM and MO 
methods of calculation. 
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Figure 3: Distribution functions for electric field lOOkV/cm showing agreement be­
tween SH-SM and discrete basis Scattering Matrix approach. 
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Figure 4: (a)The Average Energy vs Position as electrical field changes abruptly from 
lkV/cm to lOOkV/cm at 0.3/xm, (b)The Average Velocity vs Position as electrical 
field changes from lkV/cm to WOkV/cm. 


