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Abstract

The spherical harmonics (SH) are applied to realize the scattering matrix
method of carrier transport modeling. Using the spherical harmonics has the
advantage of reducing the matrix by approximately a factor of 10 less than the
previous discrete basis approach(l]. To realize the approach, new spherical-
harmonic functions are defined to overcome difficulties associated with orthog-
onality, The scattering matrix is calculated using Monte-Carlo(MC) techniques
to populate the new basis functions. As a initial step towards demonstrating
the accuracy of the new mathematical formulation, we calculate the electron
energy distribution functions for different homogencous fields. We also calcu-
late the space-dependent average energy and velocity for a step electrical field,
and show agreement with Monte Carlo simulations.

1. Introduction

In this work we show how to combine the Spherical Harmonic and Scattering Matrix
approaches of semiconductor modeling in such a way as to take advantage of many
of the attributes of both methods [1, 2, 3, 4, 5].

2. Theory and Realization

In the 1-dimensional Scattering Matrix method, the device is divided into thin slabs.
Modeling is then achieved by analyzing the effect the electric field and scattering
have on the electrons in each slab. This is realized by partitioning the current into
flows which are into and out of the slab from either side. Details of the current in
momentumn space in each slab are then obtained by further dividing the flow into
numerous orthonormal components, and writing the current in terms of a flux vector.
Transport through the slab can be described mathematically by operating on this
flux vector with the Scattering Matrix. The flux vector can be expressed in terms of
virtually any orthonorinal basis set. The physical details of carrier flow in momentum
space can then be explored by determining the flow associated with the individual
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constituent basis functions. The most dircct method to resolve the flux is with a
discrete momentum space basis [1, 2]. Such a discretization can yield accurate results,
but has the disadvantage of requiring considerable memory.

To overcome memory problems, we express the angular dependence of the flux vector
in terms of continuous Spherical Harmonic basis functions. This is achieved by first
expressing the flux function F}(k,0) as the product of two independent functions:

F (k,0) = r(k)O(0) (1)

For the variable k& we directly discretize on a uniform mesh, which assumes the or-
thogonal basis is composed of unit pulse functions h;(k), which are defined by

Y — 1 1’" S kl+l
) ={ 0 6 Sk or B <t @
The function x(k) is thus given by
K(k) =3 a;h,(k) )

where o; is the coefficient of the unit pulse function h;(k).

For the angular dependence we use a revised Spherical Harmonic-type expansion. This
revision was necessary because otherwise orthogonality would force all SH coefficients
with | > 0 to be zero, and not allow higher order modes to be populated. We
overcome this obstacle by incorporating the weight function into the basis function.
The expansion for ©(0) then becomes:

o0 = = AR0) 0<0<7 )

1=0,2,..

Where we have defined the new Spherical Harmonic-type function 7(6) as

= P(0)/(2l +1)sin0 (5)

B is an expansion coefficient, and Py(f) represents the standard Spherical Harmonics.

The flux function, incident on the slab from the left F}(k, 0), in terms of the revised
Spherical Harmonics becomes

Ff(k0) =33 h()P(O) 0<0<T (6)

where Cf = ;6. To fully describe the system, we will also have a flux F,,(k,0)
1nc1dent on the slab from the right, a flux 7 (k,0) transmitted to the left, and a flux

F (K, 0) reflected to the right. These other 3 flux functions relative to the slab
have analogous definitions. The goal of the analysis is to determine the expansion
coeflicients Cy, and thus the flux function. To do so, we first must determine the
scattering matrix.

The scattering matrix is determined by forcing all the incident particles to be in
one particular mode, and then determining the modes of the particles which are
transmitted and reflected from the slab. This is illustrated in Fig. 1. The scattering
matrix is constructed by performing such a calculation for each incident mode.
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Figure 1: The Scattering of particles from a certain 4l rpode and the tiz.ms]m;}tztlzd Ii(‘;lld
reflected particles fluxes of a specific momentum magnitude as a functior gle.

Once the scattering matrix is determined, the coefficients and thus the flux vectors
are ascertained by solving the following equation iteratively.

(&)-0n(g) "

After calculating the flux vectors, the distribution function can be readily obtained
by dividing the flux by the momentum dependent velocity.

3. Results

As an initial demonstration of the approach, we used the method to solve t\l}nvc It3]TE
for various homogencous clectric fields ranging from 1kV/cm to 200kV/cm. We X 1fen
compared the results to Monte Carlo calculations and found cxcgllent agrcemcnb or
all cases (Fig.2). We also compared the results of the new Spherical Harr}no:lnc aixcs
with the previous descrete approach. We see in Fig.3 that the two methods ﬂglf. .
However, the discrete approach requires a 10 times larger matrnx. By claSQitK lt[lg
scattering matrices, we calculate the space-dependent average encrgy and vel oci y | tOr
a step field. In Fig.4 we show agreement with MC for average energy and velocity,
including the effects of overshoot.
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Figure 2: Distribution functions for electric fields of (a) 1kV/em, 10kV/em and
(b)75kV/cm, 100kV /cm, 200kV/cm. showing agreement between SH-SM and MC
methods of calculation.

Figure 3: Distribution functions for clectric field 100kV/cm showing agreement be-
tween SH-SM and discrete basis Scattering Matrix approach.
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Figure 4: (a)The Average Energy vs Position as clectrical field changes abruptly from
1kV/em to 100kV/em at 0.3um, (b)The Average Velocity vs Position as clectrical
field changes from 1kV/cm to 100kV/cm.



