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Abstract-We investigate numerical integration and 
iterative solution strategies for a class of reaction- 
diffusion systems used for modeling nonequilibrium 
phosphorus diffusion in silicon. These problems typi- 
cally yield stiff systems of equations, and their efficient 
numerical simulation requires the use of stable inte- 
gration strategies along with fast, robust algebraic sys- 
tem solvers. We compare the numerical performance 
of semi-implicit Runge-Kutta methods in conjunction 
with several standard nonsymmetric iterative solvers 
and multigrid methods. 

I. INTRODUCTION 

The use of stiffly-stable integration methods and it- 
erative solution strategies has proven effective in many 
reaction-diffusion applications. Such schemes also ap- 
pear promising for the phosphorus diffusion models that 
we consider here. Various implicit integration techniques 
have been investigated in the literature for these prob- 
lems including, for instance, the trapezoidal rule and its 
variants [ 11, backward difference formulas [2] and Adams- 
Moulton predictor-corrector schemes [3]. In this work we 
consider the semi-implicit Runge-Kutta methods which 
are known for their excellent stability properties. They 
have not been widely used in the past since they lead to 
multiple linear algebraic systems which must be solved at 
each integration step. This is where iterative and multi- 
grid methods must be employed to efficiently solve the 
algebraic systems. The present work explores several gen- 
eralized gradient type iterative schemes that are designed 
for nonsymmetric and/or indefinite algebraic systems. We 
also consider different smoothing approaches in multigrid 
algorithms in an effort to improve their robustness. 

11. PHOSPHORUS DIFFUSION MODEL 

In our numerical studies we consider the 5-species phos- 
phorus diffusion model by Richardson and Mulvaney [2], 
[3], which can be written as the following system of 
reaction-diffusion equations 

dE 
- = D E V ~ E  + k k r P V  - kgvE at 
d F  - = D F V ~ F  + k E r P I  - k,F,vF at 
ap  
at - = -kgrPV + kFevE - kgrPI + kfeVF 

where the solution vector U = [V, I ,& ,  F,PIT rep- 
resents, respectively, the concentration of vacan- 
cies, interstitials, phosphorus-vacancy pairs (E-centers), 
phosphorus-interstitial pairs and substitutional phospho- 
rus atoms.The diffusivities and reaction rates are con- 
stant, and their numerical values at 900°C temperature 
are estimated in [2], [3] as 

10 Dv = 10- , DI = lo-', DE = 
DF = 2 x 1 0 - ~ ~ [ ~ 1 1  D'S in units ofcm2s-l] 

'for - for - 
k& = los-', k L v  = 12s-I kbi = lo-" ~ m ~ s - ~ ,  
veq = p q  = 1014 cm-3 

I (2) E - k F  - 10-14 cm3s-l 

For all species zero-flux boundary conditions are enforced 
everywhere except a t  the exposed surfaces, where we spec- 
ify V, I ,  E, F and P as 

P = C* (ambient gas concentration), 

111. NUMERICAL FORMULATION 

The PDE system is discretized using the method of 
lines, and the resulting ODE system is integrated in 
fully-coupled, implicit form using either a backward Eu- 
ler scheme or semi-implicit Runge-Kutta methods. The 
discretization is performed using a 9-point mapped finite 
difference strategy for nonuniform, structured grids. We 
consider 2nd and 3rd order integration schemes with 2 

v - d V  - Dvv2v - kgrpv + kEvE - kbi(vI - Veqleq) and 3 stages respectively. For an ODE system of the form 
d t  - = F(u) ,  these schemes can be written in the following 

general form [4] 
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where q denotes the number of stages, and ki has the form 

i - 1  

ki = [F(ufl + At b j k j )  
j=1 

i - 1  

+At aiA(ufl + At c j k j )  I C ; ]  
j=1 

Here A is the Jacobian matrix of F with 

(4) 

respect to U ,  

and the ai, ai ,  bj  and c j  are constants that depend upon 
the specific integration scheme under consideration. Note 
that each stage involves a function/Jacobian evaluation 
and linear system solution. 

The linear systems are solved using either direct/band 
elimination or one of a suite of iterative methods in the 
parallel PCG package [5]. These include a variety of gen- 
eralized gradient iterative schemes such as biconjugate 
gradient (BCG), BCG squared (CGS), CGS with stabi- 
lization (CGSTAB), QMR and GMRES. We also explore 
multigrid schemes for iteratively solving these systems. 
Designing effective iterative or multigrid schemes for this 
class of problems is challenging since the resulting linear 
systems are strongly nonsymmetric and far from diagonal- 
dominance. In particular, the PDE's for E and F in (1) 
with the coefficient values given in (2) contribute large 
off-diagonal entries in the Jacobian matrix of the dis- 
cretized system. For example, if we discretize the PDE 
for E in 1D assuming a 1 micron domain-length with 100 
uniform mesh cells, the diagonal entry in the Jacobian 
matrix is of the order -Dv /h2  - kfev - 10 (s-'). On 
the other hand, the off-diagonal entries corresponding to 
the derivatives with respect to V and P are respectively 
of order k&P and k i r V .  The value of P near the ex- 
posed surface is close to the concentration of phosphorus 
in the ambient gas which, in our test cases, is - 1021 
~ m - ~ .  Thus, there are some rows in the Jacobian matrix 
where this off-diagonal entry is - lo7, while the diagonal 
entry is - 10. This severely degrades the performance 
and robustness of iterative methods. 

We have investigated multigrid algorithms with a few 
different variations in the smoothing strategy. The basic 
idea in multigrid methods is to use a sequence of nested 
grids in the discretization, and to iteratively solve the orig- 
inal problem by accumulating corrections from the nested 
sub-grids [6]. A key component of multigrid algorithms 
is an iterative relaxation process that is used for locally 
smoothing the errors at each grid level. Effectiveness of 
the smoothing mechanism in damping oscillatory compo- 
nents of the error is critical to  the success of the multigrid 
algorithm. 

In the present work we have explored variations of 
Gauss-Seidel relaxation, which is very commonly used in 
multigrid schemes. The PDE is discretized and the Jaco- 
bian matrix assembled in 5 x 5 blocks for the 5 unknowns 
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Fig. 1. 
shaded area along z = 0 represents exposed area in 2D test. 

Geometry and dimensions of domain used in test cases; 

at each grid node; i.e., it has the form 

r A13 . . .  1 

where each Aij is a 5 x 5 matrix and N is the total num- 
ber of grid nodes. The 9-point stencil, of course, implies 
that all except 9 of the submatrices in each row of A are 
zero. In the multigrid algorithm, we consider both point 
and line relaxation forms of the Gauss-Seidel scheme, with 
the provision that all the unknowns at each grid point or 
line be solved simultaneously. This is often referred to 
as "collective" point or line Gauss-Seidel smoothing in 
the multigrid literature. We have implemented 3 vari- 
ants of this scheme: (1) collective point Gauss-Seidel, (2) 
collective line Gauss-Seidel with sweeps in either x- or y- 
direction, and (3) collective line Gauss-Seidel with alter- 
nating sweeps in both directions. Each variant exhibits 
somewhat different smoothing properties as we shall see 
in the results. 

I v .  RESULTS AND DISCUSSION 

Numerical simulations for the 5-species model (1) have 
been carried out in one- and two-dimensions at  900°C 
for the predeposition test case considered by Richardson 
and Mulvaney [3]. The domain is a rectangle 0 5 IZ: 5 5 
microns and 0 5 y 5 2 microns. In the 1D case (Test 1) 
we treat the entire 2 micron side at 2 = 0 as the surface 
exposed to the ambient gas, and in the 2D case (Test 2) 
we consider the regions along x = 0 where 0 5 y 5 0.5 or 
1.5 5 y 5 2 as the exposed surface (see Fig. 1). 

Figure 2 compares the behavior of different integration 
schemes for Test1 over a 60 second simulation time using a 
25 x 5 mesh with a band solver. The step-size is automat- 
ically controlled to satisfy a user-specified error tolerance. 
The CPU timings for this simulation on a Cray J90 are as 
follows: 583 sec. for the backward Euler (orderzl), 444 
sec. for the 2nd order RKSI, 269 sec. for the 3rd order 
RKSI. 

As we observe in this figure, the time-step increases by 
5 - 6 orders of magnitude within the first 60 seconds of 
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ther into the time domain.) Numerical experiments using 
the iterative solvers demonstrate their increasing instabil- 

well over 50 % of the systems. For values of At below this, 
the most effective among the iterative methods we tested 

Fig. 2 .  Step-sizes of various integration schemes for a 60 second 
simulation of Testl* 
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was CGSTAB, followedby the standard BCG and CGS 
schemes. Other methods that also worked satisfactorily in 
this range include a simplified 3-term QMR algorithm and 
the GMRES scheme. Methods that performed poorly in- 
cluded the Lanczos Orthores algorithm and the truncated 
Orthomin method. 

The multigrid schemes performed somewhat better 
than the gradient iterative methods. With collective point 
Gauss-Seidel smoothing, the method remained effective 
up to about twice the time-step at  which the iterative 
methods breakdown. We then switched to the line Gauss- 
Seidel forms, and found that with alternating line relax- 
ation the multigrid method worked well up to At - 0.25, 
which is more than an order of magnitude better than the 
value for the iterative methods. This suggests that to im- 
prove performance further we need even better smoothing 
strategies. 

Figures 3 and 4 show the computed solution for Test 1 
using the 3rd order scheme after 60 and 600 seconds re- 
spectively. Figure 5 shows the phosphorus profile for the 
2D case computed using a 25 x 25 mesh. Our multigrid 
studies showed that the relatively simple point smoothers 
are inadequate for solving most of the algebraic systems 
that are generated during a full simulation. With alter- 
nating linejblock smoothers the behavior is better, but is 
still not robust enough as the time steps get larger. More 
work is needed to construct better multigrid smoothers. 

V. CONCLUDING REMARKS 

We have explored numerical integration, iterative SO- 

lution and multigrid strategies for phosphorus diffusion 
modeling. Our investigations with semi-implicit Runge- 
Kutta integration methods suggest that the high-order 
forms of these schemes are promising for improving nu- 
merical performance. However, it is also important to 
develop efficient methods for solving the resulting al- 
gebraic systems, which are nonsymmetric and far from 
diagonal-dominance as the integration step sizes increase. 
In essence, what we have seen is that improving the inte- 
gration methods leads to algebraic systems that are more 
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Fig. 3. Computed solution for Testl after 60 seconds. 
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Fig. 4. Computed solution for Testl after 600 seconds. 
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Fig. 5. Computed phosphorus profile for 2D test case after 60 sec- 
onds. 

challenging to solve iteratively. Studies with generalized 
gradient iterative schemes demonstrate the difficulties in 
solving these systems. In order to improve the robust- 
ness of these iterative methods it appears necessary to 
construct better preconditioning and block-partitioning 
strategies. Multigrid methods performed better than the 
gradient iterative schemes. Our studies show that the use 
of better smoothing strategies increases the robustness of 
the multigrid algorithm, and permits much larger integra- 
tion step-sizes. Investigation of new preconditioners and 
multigrid smoothing mechanisms is part of our ongoing 
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