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Ab8t~act- In this paper we present the implemen- 
tation and testing of an inverse diffusion solver that 
determines implant doses and drive-in times for a set 
of coupled one-dimensional diffusion profiles spreading 
over several regions of a device. The solver starts with 
a description of each distinct device diffusion region in 
terms of a set of junction depth z3 and peak concen- 
tration c,  specifications, and a simplified description 
of the process flow. From this information, the solver 
setups a storage data structure containing the full his- 
tory of each profile within each region at each process 
step. Starting from a guess for the dose and drive- 
in times, the software first fills the storage structure 
with approximate profiles and then iteratively solves 
the problem backwards starting from the last diffusion 
to  the first followed by a forward guess correction loop. 
The backward-forward recursion loop is repeated until 
errors in z3 and cs  are negligible. The solution method 
was successfully tested with several conventional de- 
vice structures. 

I. INTRODUCTION 

The calculation of diffusion profiles in semiconductor 
devices using software simulation plays an important role 
in silicon processing. Most diffusion solvers require a pro- 
cess with fixed doses, temperatures, and drive-in times as 
input yielding corresponding dopant profiles as outputs. 
This calculation procedure is a consequence of the numer- 
ical methods used for the solution of the partial differen- 
tial equations dictating the dopant motion. However in 
device process development, designers are often faced with 
the inverse problem of calculating these diffusion param- 
eters necessary to achieve specific profile requirements. 
This type of inverse problem is often solved in an itera- 
tive fashion or through the use of numerical optimization 
procedures that “zero-in” the correct diffusion parameters 
[l]. The problem becomes more difficult if there is more 
than one profile involved. In complex device structures 
such as BiCMOS, there is coupling between seven or eight 
diffusions; hence their parameters must be solved simul- 
taneously. Furthermore, the coupling is intrinsically con- 
nected with the process flow which determines at  which 
time dopants are introduced in distinct regions of the de- 
vice. 

In this paper we present a method of solution for this 
type of coupled inverse problems. In this method, the de- 
vice is first divided onto a set of distinct diffused regions 
or “zones” as shown in Fig. 1. Each of these zones is con- 

sidered as a one-dimensional problem. The coupling of 
one zone to another takes place through causality in the 
process steps or physical overlap of individual diffusions. 
In this solver, all diffused profiles are accepted in terms 
of a final junction depth xjf ,  peak concentration c,f ,  and 
corresponding zone. The solver uses a description of the 
process flow as input and calculates the implant dose Q 
and drive-in time t for all diffusion steps to achieve de- 
sired profile specifications at the end of the process. This 
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Fig. 1.  the implant dose Q and drive-in time t can be solved 
by giving the value of junction depth xj,f and peak con- 
centration cs, 

multizone inverse diffusion solver is one of the submodules 
used in the process compiler MISTIC [2] which accepts a 
device cross section as input and generates process flows 
as outputs. 

of each dopant profile in each zone. 

11. PROBLEM DEFINITION AND DOMAIN PARTITIONING 

In the multizone approach, the concentration of dopant 
species Ci in each of the zones is regulated by the well 
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known nonlinear PDE [3], [l] 

where fi is the electric field enhancement factor 

0.5Ni 
[(o.scnet)2 + ng lo .5  

fi = 

and 
n 

cnet  = - zi Nj (3) 
i = l  

where Ni is the electrically active concentration of the ith 
impurity. In order to find doping profiles, Eq. (1) must be 
solved subject to  a series of initial conditions and thermal 
cycles. The initial conditions are determined by a set of 
ion implants that introduce the dopant into the solid and 
the profile history at different steps in the process. Hence, 
the implant doses and drive-in cycles ( Q , t )  in a region 
must be known to solve for Ci which ultimately determine 
zj and c ,  . The inverse problem therefore requires the use 
of an iterative procedure. 

Starting with a guess ( Q n , t n )  for the dose and time, 
Eq. (1) is solved yielding an approximate ( ~ j , ~ ,  c ~ , ~ )  and 
error E;, = ( ~ j , ~  - zj,j., c ~ , ~  - c.,,). This error can then be 
used to correct the initial guess yielding (Qn+l , t,+l) and 
so on. The calculation of Ci is computationally expensive; 
therefore it is important to select an iterative scheme that 
requires a minimum number of profile calculations. 

The coupling of profiles within different zones takes 
place temporally in the sense that all profiles present in 
the device at a given time are affected by subsequent 
drive-in cycles. Furthermore, it is possible to overlap dif- 
fusions over several zones. In this case, several zones are 
affected by the same implant, and the specifications on 
this type of diffusion can only be met in a single zone. 
The solution scheme described here accounts for these in- 
ter actions. 

A. Internal Data Storage 

In order to keep track of multiple profiles in several 
device zones at  different times in the process, the solver 
setups the six level profile storage data structure shown in 
in Fig. 2. At each step in the process, the device contains 
several diffused zones. Each zone contains several profiles, 
each profile corresponding to  a different impurity. Each 
of these profiles may be distributed among several layers, 
and each layer contains a one dimensional mesh consisting 
of a linked list of a variable number of elements. Each of 
these elements contains individual nodes where individual 
concentrations are stored. The data structure is setup to  
store and launch numerical finite element solutions of Eq. 
(3) at any step during the process. 

The highest level step structure stores step type and 
parameter information including type of impurity, current 
dose and drive-in cycle time, temperature, current and 
final junction depth and peak concentration. Some of this 
information is copied to the profile structures below. 
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Fig. 2. 
diffusion solver 

B. Finite Element Profile Solution 

Internal data structure tree of multizone inverse 

Eq. (3) is solved using the method of finite elements. 
We have adopted this scheme because it is easily ex- 
panded to  higher dimensions. Alternatively, Eq. (3) 
could be solved with a conventional diffusion solver such 
as SUPREM [l]. Equation (3) is first discretized over each 
element and translated into the nonlinear matrix system 

A(a)a + Bci = P, (4) 
where A ( a )  is the global stiffness matrix, and B is the 
global capacity matrix, and a is the solution vector. P is a 
vector describing the flux of impurities leaving or entering 
the device domain. The calculation of these matrices is 
an standard procedure described in many textbooks [4]. 

This first order nonlinear time dependent system of dif- 
ferential equations is known to be stiff and can be solved 
numerically in several ways. One of the most common 
schemes solves for a at discrete times using the modified 
backward difference method (MBD) [5] 

h 

An+lan+ l  Ban, (5) 
where A,+, = A(&,) A t + B and 6 = B which can 
be solved iteratively to update An+l with the new an+l. 
Culham [5] showed that this scheme is convergent in just 
a few iterations. 

A drawback of the MBD method is that  the error is 
linearly dependent on the time step giving E 0; At. A 
more precise numerical method of solution for Eq. (4) 
employs the predictor corrector method [6]. The predictor 
corrector (PC) method uses two steps to  get solutions with 
error E 0: At2. In this scheme, Eq. (4) is solved using an 
intermediate solution vector a;+, 

Our numerical experiments predicted a more accurate re- 
sult from the PC method, but it is more computationally 
expensive than the MBD method since it requires two 
steps per iteration. The FEM solver is implemented us- 
ing a fully-adaptive mesh that adds or removes nodes from 
each node as the shape of each profile changes. 



111. INVERSE SOLUTION METHOD 

In the most general sense, this inverse problem could 
be considered as a 2N multivariable optimization prob- 
lem since for each diffusion in the device, two parameters 
( Q , t )  must be determined subject to two specifications 
in ( z j , j ,  c s , j ) .  This multidimensional view however suf- 
fers from many drawbacks. First, the problem can have 
many local minima, and its picture is obscured by the 
high dimensionality. Furthermore, each function evalua- 
tion is very computationally expensive because each point 
requires many FEM solutions. 

A great deal of computational savings can be achieved 
from the following observation. Since the dopants are in- 
troduced into the device in a known order, it is possible 
to minimize the amount of computation by solving for 
the parameters for the last diffusion first. This is justi- 
fied because the motion of dopants in the last diffusion 
is only influenced by the last drive-in cycle and the exis- 
tent profiles. Since the existent profiles were subject to 
many drive-in cycles, they are in general well developed 
at this stage; hence in general they are minimally affected 
by the last drive-in cycle. Therefore the parameters for 
the last diffusion are largely determined by an approxi- 
mately stationary background and the drive in time for 
the last thermal cycle followed by the diffusion prior to 
the last and so on. The main virtue of this scheme is that 
at any given time, parameters for a single diffusion are 
determined. 

Essential to this scheme is the availability of a good 
initial guess, and an iterative scheme to correct it. In 
our scheme we first determine initial guesses for (Q, t )  as- 
suming that the profiles are approximately gaussians, and 
implants are considered to be shallow. Junction depths 
are computed from intersections between two gaussians 
or a gaussian and a constant background. The junction 
depth constraints form a set of equations yielding the final 
straggle, (pT)i , for each profile which is the cumulative Dt 
product of all successive thermal steps. A, simultaneo_us h 

solution results in the matrix equation & [TI Pp + C = PT 
where (Pp) i  = Di(Ti)ti are partial contributions due to 
each variable drive-in, and C accounts for all fixed ther- 
mal cycles. Elements in matrix (Y are diffusivity ratios 
aij =-Di(Tj)fDj(Tj). 

The matrix equation is initially solved with a fixed tem- 
perature. Our implementation uses an initial choice of 
1000°C for all steps. Since the i th  diffusion is only af- 
fected by subsequent steps j 2 i, then matrix & is upper 
triangular and solved easily by back substitution. If the 
drive-in times are too long or too short, Ti is increased 
or decreased correspondingly to fit an acceptance time 
window. If all ,Bp 2 0, corresponding drive-in times and 
implant doses are calculated from 

The gaussian derived estimates for (Q, t )  give us a rough 
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idea of the required doses and drive-in times, but in gen- 
eral they will not differ from the actual values by more 
than an order of magnitude. The diffusion solver thus 
starts with a Gaussian based guess for the profiles and 
iteratively refines this guess until sufficient convergence is 
achieved unique solution. 

In this scheme, Q and t are solved using a recursive 
backward loop with non-causal corrections in a forward 
loop as shown in Fig. 3. The dose and diffusion time 

I 8 
Fig. 3. Structure of inverse diffusion solver 

( Q k - 1 ,  t k - 1 )  for the last kth diffusion are solved numeri- 
cally to conform to xj,k and cs$ specifications. Next, the 
k - 1  diffusion parameters ( Q k - 2 ,  t k - 2 )  are solved with the 
updated ( t k - 1 ,  Q k - 1 )  and corresponding numerical pro- 
file. The backward recursion is continued until ( Q o , t o )  
is found. In the forward loop, new numerical guesses are 
calculated using the updated (Qj , t j )  to reduce the error 
in the next backward loop. These new guesses are used 
again in the backward loop to obtain second order correc- 
tions. The backward-forward recursion loop is repeated 
until errors in xj  and cs in the forward loop are negligible. 

Numerical solutions of the diffusion PDE provide 
( x j l c s )  in terms of ( & j , t j ) ,  but not vice versa. There- 
fore the correct (Qj , t j )  are arrived through iterative 
error minimization in cz j  = (zj - zj,!), and = 
log(cs,j/cs,j), where ( c , ? j ,  zj~) are its desired values. Sev- 
eral iteration schemes for (Qj , tj) have been implemented. 
These include a contraction mapping, a globally conver- 
gent Newton method, and a Bayesian global optimization 
[7] in that order. In general, approximately 5-10 iterations 
are required for convergence in each diffusion. Typically 
5-25 backward-forward loops are necessary for full conver- 
gence within 3 % of specifications. Since the existence of 
solutions is not warranted, if the first two algorithms fail, 
the Bayesian global optimizer finds the best possible fit. 

The most efficient method of iteration is the contraction 
mapping scheme. In this scheme the corrections in (Q , t )  
are directly related to the error in (zj , c,) by the following 
relation 



Eq. (8) is in general a contraction which converges very C d 
quickly. The main difficulty with the method is that it is 
not always convergent, specially for diffusions that have 
very high concentrations. Currently, a number of other 
more promising schemes are being attempted. These 

MBD 

I methods are based on finding a good “fitting” function C h 
for the global error that can be evaluated quickly [$I. 

2 zone 2 diffusions 3 zones 3 diffusions 

iteration time iteration time iteration time 

4 zones 4 diffusions 

162 0.38 min. 276 0.65 min. 384 0.83min. 

IV. TESTING 

The solution method was tested with several structures. 
Figure 4 shows a table comparing the performance of the 
MBD and PC schemes when tested with a Sun Ultra- 
SPARC station. Both methods require roughly the same 
number of matrix iterations. 

I I I I I I 
I I I I PC I 164 10.65 minj 246 11.05 min.1 354 I 1.42 min.1 

Fig. 4. comparison of the performance of the modified back- 
ward difference and predictor and corrector scheme used 
in inverse diffusion solver 

The diffusion solver was then tested with a CMOS and 
a BiCMOS structure. Fig. 5 shows comparison of doping 
profiles in the CMOS devices at the source region with 
those obtained from SUPREM I11 using the parameters 
determined by the solver. Figure 6 shows the same com- 
parison with an 8-simultaneous diffusion, 4-zone, twin- 
well BiCMOS structure. The diffusion solver was able to 
find the implant doses, drive-in temperatures and times 
to meet the specified junctions and peak concentrations 
within 2 % of specifications. The small difference in the 
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Fig. 6. BiCMOS S/D and BIP profiles 

v. SUMMARY 

The testing results show that the inverse diffusion solver 
can estimate accurately the dose Q and drive-in times t for 
multiple profile requirements in the same device. Using 
this scheme, a process designer can determine diffusion pa- 
rameters invoking the solver only once. This solver is in- 
cluded as a submodule of the process compiler MISTIC. a b 
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