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Abstract- A new numerical formulation to model 
oxidation is proposed. It includes discontinuous shape 
functions to model two material diffusion-reaction, 

is taken into account by incorporating jumps in the field 
variable (and, therefore, the flux computations). This is 
a departure from traditional diffusion modeling mecha- 

level-set based interface evolution, viscoelastic consti- 
tutive relations, finite deformation and large expan- 
sion. Well-posedness and numerical stability of the 
numerical methods are investigated in detail. Stress- 
dependent oxidation and residual stresses can be 
treated in one, two and three dimensions. Traditional 
gridding problems associated with moving boundaries 
are resolved by using an Eulerian representation of the 
interface. The constitutive model is thermodynami- 
cally consistent and preserves fundamental properties 
like objectivity of constitutive equations throughout 
the process. 

I. INTRODUCTION 

Thermal oxidation, at  a process modeling level, can be 
looked at  as a three step coupled process. The steps are, 
(i) reaction of Si and 0 2  to  form SiOa, (ii) diffusion of 0 2  

through Si02 and (iii) the mechanical equilibration fol- 
lowing the expansion associated with the reaction in step 
(i). In reality, these processes are happening simultane- 
ously. For simulation purposes, a mathematical model is 
required. This would, typically, be a system of differen- 
tial equations. These can be obtained by investigating 
the fundamental balance laws of mass, momentum and 
energy. In the following sections, equations governing the 
three steps will be derived and their numerical implemen- 
tation will be described. 

11. OXIDANT DIFFUSION 

nisms. The transport equation for conservation of mass 
with surface of discont inui ty ,  I? is given by 

In the above equation, p is the density of the diffusing 
species and V, is the speed of the discontinuity surface. 
The direction of motion of the surface is given by n, nor- 
mal to the surface of discontinuity and [.] is the symbol 
representing jump in the argument. 

This equation incorporates all the possible modes in 
which the oxidant can be transported through a medium. 
The increase in mass (due to the oxidant diffusing into 
the medium from the Si02-02 interface) is taken into ac- 
count with a boundary flux term. Divergence theorem 
yields the diffusion term. 

Applying the assumption that the process is slow and 
in the absence of convection, global conservation provides 
the generalization of the Deal-Grove model in multiple 
dimensions. 

Where, F = -D 2 is the diffusive flux and I[F.n] = k,p- 
represents the reaction term. 

The transport theorem is the fundamental equation 
from which all the balance laws can be derived. If the 
integrand is chosen to be the density, one gets the mass 
balance equation. Similar equations can be derived for 
momentum and energy balance. For the diffusion prob- 
lem, density of the oxidant is used as the field variable in 
the transport equation. The presence of a reaction surface 

Note, standard Galerkin techniques using piecewise 
continuous shape functions ( C O  continuous) cannot be 
used to numerically approximate equation [Z]. This will 
be 

Well-posedness of the diffusion equation requires one 
more condition at the interface. This is given by the seg- 
regation condition. 

with enhanced finite 
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A .  Weak Form of Diffusion Equation 

Using the notation in [2], 

- ( v , F  .n)an = 0 (3) 

Standard piecewise linear shape functions can be used to 
approximate the concentration field in all regions except 
near r. Across the surface of discontinuity, continuous 
interpolations are enhanced with discontinuous interpola- 
tions that are zero at the vertices. Jump in concentration 
and fluxes provide the two equations to determine the 
exact topology of the shape function. For one and two 
dimensions they are shown in figure [l]. Location of the 
jump within an element is to be determined separately. 
This will be explained in section 111. 

The enhancements are designed such that they are dis- 
continuous across adjacent elements. This uncouples the 
unknowns determining the jump heights. They can thus 
be computed within the element and the need for global 
assembly in obviated. The enhancements are stable and 
convergent. Their theory is described in [l] and references 
therein. 

111. SURFACE EVOLUTION 

The level-set method [5] is used to describe surface evo- 
lution. It is robust and allows easy extension to three 
dimensions. 

The Si-Si02 boundary is described as the zero level set 
of a higher dimensional surface. Evolution of this surface 
can be described by a non-linear advection equation. This 
provides for an easy description of' complicated surfaces in 
addition to the rich mathematical theory that comes un- 
der the Hamilton-Jabobi equations. 

The non-linear advection equation for the level-set fimc- 
tion .1c, is given by, 

(4) 

The L2 norm is given by ( 1  . 11.  F, is the speed of the 
propagating surface. Note, the equation is non-linear in 
two or higher dimensions. 

The reason for calling equation [4] as an advection equa- 
tion becomes clear when the spatial term is written as 

Defining a = FnV$/llV.ll,ll, a purely advective system is 
obtained. Non-linearity arises out of dependence of a on 
Vd). 

A. Numerical Formulation 

Assuming appropriate topologies for the trial and 
weighting function spaces the semi-discrete weak form of 

equation [4] is written as, 

( 7 4  $6) + (,U, a . 04) = 0 (6) 

where, a = FnV$/11V.4i,II, is the advection velocity. 
It is well-known that pure advection equations are spa- 

tially unstable. Standard procedures to stabilize these 
equations are upwinding and artificial diffusion. Both 
these methods introduce diffusion like terms in the equa- 
tion to provide spatial stability. In the finite element 
literature, Galerkin least, squares met,hod, suggested by 
Hughes [3] and co-workers in the mi tex t  of fluid dynam- 
ics is widely used. The stabilized equation is given by, 

( tu ,  4,t 1 + 4 ' ( u ,  4) + (C'([j, ,r R(#)) = (,(4 f) 
where, C is the spatial differential operator and R is the 
residual. Making the least squares term residual depen- 
dent is crucial in rendering the formulation consistent. 
As the exact solution is approached the residual R tends 
to zero and the original equation is obtained. The least 
squares term is defined only in element interiors in case CO 
interpolations are used. The design parameter T is chosen 
to provide exactness in one dimension. This, of course, 
is not the only choice. For tshe problems in this work, it 
worked well. 

Time integration of the advection equation is performed 
using the forward-Euler scheme. The scheme is explicit 
if the mass matrix is lumped. A further advantage of 
explicit scheme is that no non-linear solves are required. 
But, explicit schemes are first, order accurate and condi- 
tionally stable. First order accuracy implies, the error 
reduces to zero linearly with t,he time step A t .  Condi- 
t,ional stability implies the existence of' upper bound on 
the time step A t .  Clearly, there is a tradeoff between 
unconditionally stable methods (always implicit) and ex- 
plicit methods. 

IV. MECHANICAL PR.OBLEM 

The quasistatic conservation of momentum provides the 
equations for the stress problem. Finite deformation kine- 
matics release t,he constraint that deformations be small 
perturbations about the original configuration. Theoreti- 
cal aspects of the formulation are drawn from the math- 
ematical t,heory of' elasticity [6]. The equations for me- 
chanical equilibrium are given by 

V ' a  = 0 (7 )  

where, CT is the Cauchy stress tensor. The above equations 
are written in the current configuration. The implication 
is that the derivatives are computed with respect to the 
current placement. The field variables are the displace- 
ments. Strain measures can be defined in both current 
and reference configurations. Strains are functions of the 
displacements. St,resses are comput,ed from strains using 
constitutive laws. The constitutive laws define material 
behavior. 
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It is well known that the oxide behaves like a viscoelas- 
tic solid. In the remaining part of this section a viscoelas- 
tic constitutive model is developed. The model will be 
developed entirely in the reference configuration to ensure 
objectivity (material frame indifference). 

Define Helmholtz free energy by 

@ = U ( J ) + $ ( E ) - Q : E  (8)  

where, E is the Lagrangian strain and J is the deter- 
minant of Jacobian of the transformation (deformation 
gradient). Internal variables Q are introduced in consti- 
tutive theories to model dissipation. The first two terms 
define the elastic part of the free energy. This is the part 
of the energy that can be recovered (reversible) during 
unloading. It is also referred to as the stored energy. The 
functional form of the elastic part is decided based on 
the molecular structure of the material and kinematical 
constraints. In addition to the free energy, evolution equa- 
tions are prescribed to fully define the internal variables. 
Restrictions on internal variables and the boundary con- 
ditions for the evolution equations arise out of thermody- 
namics. Viscoelastic behavior is defined by the following 
evolution equation for Q ,  see [7]. 

where, 11 is the relaxation t,ime. The internal variable is a 
purely deviatoric quantity. Given the incompressibility of 
Si02 volume changes are absent. Hence, there can be no 
volumetric dissipation. 

In the limit, free energy should reach steady state. This 
is a thermodynamic necessity. A material cannot dissipate 
for infinite time. Also, the dissipation cannot be less than 
zero. This implies an increase in the internal energy of 
the system. The latter is a statement of the second law 
of thermodynamics. 

Solution to equation [9] can be written as a convolution 
integral. Convolution integrals are hard for numerical im- 
plementation. They require complete time history of the 
integrand. Instead, following [7] a. two point recurrence 
relation can be used. 

The recurrence formula is derived as follows. Consider 
the following convolution integral. 

h(t) = b' exp [ v] i q  d s ds (9) 

Using h,,+l = Ib(t,+l), h,, = h ( t n ) ,  applying mid-point 
Iule to the time derivative term inside t,he integral arid 
irkegrating, we get, 

It is now a two point recurrence relation. The data base 
requires one history term. The recurrence relation is 
based on the use of mid-point rule which renders it un- 
conditionally stable and second order accurate. Again, 

~ 

239 

the integration can be done entirely in the reference con- 
figuration thus trivhlly satisfying objectivit,y. 

When the r eadon  between 0 2  and Si takes place, sil- 
icon is consumed arid Si02 is formed. Molar volume of 
Si02 is 2.2 times that of Si. So, the volume occupied by 
the newly formed Si02 is 2.2 times the volume of Si that 
was consumed. This phenomenon must be duplicated in 
the numerical framework and is described in the next sub- 
section. 

A .  Large Expansion 

During deformation, volume change is parameterized 
by tthe .Jacobian of the gradient, of the deformation. In- 
tuitively, it can be looked at, as the linearization of the 
deformation in a small neighborhood of the point of in- 
terest. Scalar triple product of the three axes associated 
with that point that form the basis, gives the volume. If 
the original set of axes were the usual Euclidean basis, the 
Jacobian is the change in volume. 

In this section the deformation gradient is Inultiplica- 
tively decomposed into expansion part F H  arid volume 
preserving part, F .  This is a direct consequence of the 
actual deformation being written as composition of two 
parts. The intermediate configuration is stress free and 
purely fictitious. But, no iit,t,enipt, will be made to corn- 
pute solutions 01 impose equilibrium in that state. 

This method wa.s first, suggestd for expansion in [4]. 
The deformation gradient is written as, 

F = F'F (11) 

The multiplicative split, in the deformation gradient 
permits, in finite deformation framework, a consistent 
method of incorporating large expansion. 

This decomposition can be substituted in any free en- 
ergy function t,o derive t,he final form in which .IH = 
det,[F'] represent,s the expansion. For the case at, hand, 
the expansion is known to bc? 2.2. 

V. NUMERICAL EXAMPLES 

The formulation described above was implemented 
within a general purpose finite element program FEAP 
[8]. The element, t,echriology incorporated a. staggered 
scheme to solve tthe coupled problem. Three sets of COW 
pled equat,ions were set up to solve for four variables per 
node. The varia,bles are, two displacements, one concen- 
trat,ion and one level set, vtuiablt?. 

Some of the crucial ;x:hievement,s of this work are t,he 
following: the Si--SiOs interface does riot need to coincide 
with element boundaries, (expansion of Si02 is incorpo- 
rated into the constitutive equations since it is a material 
property, a general viscoelastic model is implemented. 

Incompressibility can be handled within the three field 
Hu-Washizu type mixed va.riationa1 formnlation without 



running into problems of “locking”. The incompressibil- 
ity constraint in enforced by an augmented Lagrangian 
formulation. 

The cylinder oxidation problem (shown in Fig[2]) was 
performed to test the code. The interface movement, 
diffusion with discontinuities and the viscoelastic stress 
problem with expansion have been solved in a staggered 
format. The mechanical part is non-linear, the diffusion 
equation is linear and the boundary motion is explicit. 
The time-step stayed unchanged throughout.The time- 
step size was determined by the explicit scheme for the 
boundary motion equation. No remeshing was required 
and the entire problem took 600 time-steps. 

VI. CONCLUSIONS 

The new formulation releases the restriction of requir- 
ing the Si-Si02 interface to element edges. The expan- 
sion formulation with the level-set description obviates 
the need for remeshing except for error based adaptation. 
“Locking” phenomenon is overcome by means of an aug- 
mented Lagrangian method within mixed finite element 
interpolations. A general thermodynamically consistent 
viscoelastic model has been used. This setting can be used 
as a platform to test, various problems involving growth 

and different constitutive models like oxidation and silici- 
dation. 
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Fig. 1. Enhancements to shape functions in 1-D and 2-D 

Fig. 2. Initial(t = OAt), intermediate(t = 300At) and final states(t = 6OOAt) 
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