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Abstvact- A sub-domain solution technique of the 
Boltemann Transport Equation (BTE) based on the 
Spherical Harmonics Expansion (SHE) method is pre- 
sented, and applied in the channel region of MOS- 
FET's. It is demonstrated that by means of suitable 
boundary conditions the "exact" solution is well ap- 
proximated, with an appreciable increase of numerical 
efficiency. 

I .  INTRODUCTION 

The SHE technique has been demonstrated to be a prac- 
tical approach for the deterministic solution of the BTE 
in semiconductors [1],[2],[3]. As opposed to the Monte 
Carlo method, there is no statistical noise in the high 
energy tail requiring long computational time, while, on 
the other hand, the limitations of the approaches based 
merely on the first moments of the distribution (hydro- 
dynamic or energy transport models) are overcome. The 
method consists of expanding the distribution function in 
the momentum space in series of spherical harmonics, re- 
placing such an expansion into the BTE, and solving the 
resulting system of PDEs  in the unknown coefficients of 
the expansion. The dimensionality of the problem is thus 
reduced, since the coefficients depend on the real space 
coordinates T and on the modulus of the momentum k 
only (or the energy E in the case of spherically symmet- 
ric bands). Of course, the method is effective only if the 
number of terms in the expansion is small. Indeed it has 
been shown that, by considering only the first two terms of 
the expansion ~ o ( T ,  E )  and fi (T, E ) ,  a satisfactory agree- 
ment with a full-band Monte Carlo code is obtained, with 
a substantial reduction of the computational effort [4]. 
However, in a two-dimensional spatial domain, the size 
of the discretized system of equations can reach the or- 
der of hundreds of thousands of unknowns, due to the 
energy independent variable that makes the problem ef- 
fectively three-dimensional. This poses severe problems 
to the sparse linear system solvers, in terms of both CPU 
time and memory requirements. 

The purpose of this work is to increase the numeri- 
cal efficiency of the method, by means of a sub-domain 
solution of the SHE equations, properly coupled with a 
full hydrodynamic (HD) simulation, in order to get the 
sub-domain boundary conditions. Similar techniques have 
been adopted within the Monte Carlo scheme in order to 
alleviate the problem of the very long simulation times 
[5],[6],[7]. It will be demonstrated here that a regional so- 
lution is a worthwhile method also in the SHE framework. 
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11. THE SPHERICAL-HARMONICS EXPANSION METHOD 

In this section the basic features of the SHE method will 
be recalled. The distribution function for the electrons 
in the conduction band is first written, by means of a 
spherical harmonics series expansion in the momentum 
space, as [l], [8] 

f (T7 I C )  = fob - ,  + w e ,  cp)f,"(r, k)+ 

n--1 ... 1, m=-2 ... 2 (1) 

where summation over repeated indices is assumed. In 
(l), x" are the spherical harmonics functions defined on 
the unit sphere in the coordinate system (k,o,cp). By 
replacing the above expression in the BTE, and match- 
ing the Coefficients of the terms of equal weight, a sys- 
tem of PDE's in the unknowns f ? ( ~ ,  k) and f P ( r ,  k) can 
be worked out. It has been shown that only the terms 
up to order one can be retained. In addition, by us- 
ing the coordinate transformation ( T ,  I C )  + ( T ,  H ) ,  where 
H = E ( k )  - q$(r) is the total electron energy and t) the 
electrostatic potential, the following system of equations 
is obtained 

9- [N,+,fo -No&])  = 0 (2) 

(3) 

where g is the density of states in the conduction band, 
ug is the group velocity, cop is a parameter related to  
the optical phonon coupling constant, Nop is the optical 
phonon occupation number and N& = Nop + 1. The 
notation g* = g(H f hw,,) has been used, and similarly 
for f?, where 'fw,, is the optical phonon energy. The 
time 71 is obtained from a self-consistent expansion of the 
electron scattering probability S ( k ,  k') through 

~ ~ - l f ;  = / , / S 0 ( k , k ' ) d 3 k '  - 3~1(IC',k)f;(IC')d~b' (4) 

The functions fi are a linear combination of the origi- 
nal coefficients fr of order one. Acoustic, optical phonon, 

0-7803-3775-1/97/$10.00 0 1997 IEEE. 229 



ionized-impurity and impact ionization scattering are con- 
sidered in this work, as well as a pseudo spherical- 
symmetric band structure which guarantees that the den- 
sity of states and group velocity are physically correct [4]. 

Once Eq. ( 3 )  has been replaced into Eq. ( a ) ,  a sec- 

the unknown f o .  Conditions are required for f o  at the ge- 
ometrical boundaries (Dirichelet condit,ions at the ohmic 
contacts, and Neumann conditions at  the free boundaries 

while at the energy extrema ( E  = 0 and E = E,,,) itj 
is sufficient, to look for a regular solution. One of the ob- 
jectives of this work is to find snitable conditions at the 
sub-domain boundaries. 

ond order difference-differential equation is obtained in - 
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Fig. 2. Boundary distribution at the side a 
111. T H E  WINDOW S O L U T I O N  TECHNIQUE 

The proposed window solution method works as follows. -10 

A HD simulation is performed on the full device, in 
order to obtain the electric potential $, the elec- 
tron concentration 11 and the electron temperature 
T,. The transport parameters of the HD model, 
such as the mobility and the energy relaxation time, 
have been calibrated in accordance with the scatter- 
ing rates and the full-band structure of the BTE, by 
means of spatially uniform simulations. 

A rectangular sub-domain (window) is selected in 
the regions where the high energy distribution is re- 
quired. In a MOSFET such a window should nec- 
essarily include t,he hot, spot at the drain end of the 
channel. The size and location of a typical window is 
illiist,rated in Fig. 1. 

The SHE t.quatioiis are solvrd only in the selected 
window, iising the potential previoiisly calcula1,ed 
from the HD solution, and by means of suitable 
boundary conditions that try to match the outer so- 
lution. 

Gate 

Bulk 
Fig. 1. Typical sub-domain for a MOSFET 

We have experimented with windows of different sizes, 
some of which are indicated in the inner spot of Fig- 
ures 4, 5 and 6. With reference to the general case 
of Fig. 1, Neumann conditions are assumed at the 
silicon-oxide interface (side c) and also at the bulk 
side (4, where the latter choice is motivated by the 
side d being well inside the depletion region. Bound- 
aries a and b have been treated in different ways. 
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Fig. 3 .  Boundary distribution at the side b 

The simplest choice is to force the equilibrium distribu- 
tion pointwise along sides a and b 

where To is the lattice temperature. This condition obvi- 
ously works well when the window extends well inside the 
source and drain neutral regions, where thermal equilib- 
rium is nearly verified. However, in order to increase the 
numerical efficiency, the use of a smaller window, possi- 
bly localized at the drain end of the channel, would be 
preferable. 

The next degree of approximation is to assume on sides 
a and b a heated Maxwellian distribution 

This function turns out, t,o bc a. good a,pproximation of the 
“real” distribut,ion only at very low energies, while it is far 
off at high energies. This is clearly shown in Figs. 2 and 
3, where f o ( r r ,  E)hm (label “heated maxwellian”) and the 
real distribution obtained from the complete SHE solution 
(label “full device”), are compared, at the two corners be- 
tween the silicon surface and the sides a and b respectively. 
In Fig. 2 (source side), electrons with energy above 0.3 
eV are still distributed in accordance with an exponential 
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equilibrium slope (“full device”), whereas in Fig. 3 (just 
inside the drain), the low part of the distribution is dom- 
inated by the cold electrons residing in the drain, with 
a tail of hot electrons coming from the channel which is 
completely ignored by the description based on the HD 
temperature. For increasing the accuracy, new boundary 
conditions have been introduced, referred to by the label 
LLwindow’l in all the figures. At the outflow boundary, 
we have generalized the method proposed in [9] for the 
metal-semiconductor interfaces. Starting from the parti- 
cle conservation eqiiation 

3 
f o t i t ( k o u t )  u o u t  f id  kout = j i n ( k i n )  Uin  . f id3kin (7) 

applied at the side b, where the subscripts “out” and “in” 
stand for the outer and the inner region with respect to 
the selected window, and A is the unit vector normal to 
the same side b, and applying the spherical harmonics 
txpansion, the following quat ion is obtained 

where T,  is the normal direction to the honndary. Eq. (8) 
can be considered a mixed boundary condition for the 
unknown fo,i,, which must be solved together with the 
system equations. For fO ,o l r f  we use the expression of 
fo(n,E)hm given in Eq. (6). As shown in Fig. 3 (label 
“window”), this approach gives the correct energy tail a,t 
the outflow boundary. Unfortunately, it can not be ap- 
plied at the inflow side. However, as already observed, 
from the ciirve labclled “full device” in Fig. 2 (side U )  it 
is seen that the distribution exhibits an equilibrium ex- 
ponential decay at high energy. This suggests to define 
the boundary condition there by means of an exponen- 
tial function with two different slopes, one related to T, 
at low energies, and the other one to 2’0 at high ener- 
gies. Two additional parameters are required, the break 
energy and the normaliza.tion n-dppendent factor, which 
are calculated by imposing the HD mean energy and con- 
centration. Such a distribution is shown in Fig. 2 with 
the label LLwindowll. 

IV. SIMULATION RESULTS 
The proposed method has been tested on three different 
devices: a FLASH-EEPROM of 0.9pm8 channel length, 
a. 0 .5pn  standard MOSFET, and a 0.2pm LDD MOS- 
FET. The full device geometries and the sub-domains are 
sketched in Figs. 4, 5 and 6, together with the corre- 
sponding bulk currents due to  impact ionization, as func- 
tions of the gate voltage. The label “window” refers to 
the sub-domain solution with the use of the boundary 
conditions described in the previous section. The two 
curves are very close, while the CPU time and memory 
saving is larger than a factor two. It should be noticed 
that we have used highly flexible tria.ngular grids partic- 
ularly well refined in the channel, with an average num- 
ber of 3000 nodes, while the average window contains al- 
most 1500 nodes. The computational advantage would be 
much larger if a more uniformly spaced grid were used. 
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Fig. 4. Comparison of the bulk currents in the EEPROM 
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Fig. 5. Comparison of the bulk currents in the MOSFET 
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Fig. 6.  Comparison of the bulk currents in the LDD MOSFET 

The electron concentration and temperature at the in- 
terface in the channel for a particular bias point of the 
MOSFET is reported in Fig. 7, with the window extend- 
ing from h g t h  = 0.5pm to length = 0.72pm. Fig. 8 
shows the distribution function in a point( in the channel 
corresponding to thr  region where the temperature starts 
to decay toward the drain (length N 0.66pm in Fig. 7). 
The “window” solution agrees well with the “full device” 
solution up to 4 eV. 
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In Fig. 9 the two solutions are compared at all the points 
at the interface of the EEPROM cell. It can be seen that 
the error at high energies due to the imprecise boundary 
condition at the source side (length=2.06pm) tends to 
decrease towards the drain, and practically vanishes in 
the hot spot (length=2.27pm). The results of Figs. 8 and 
9 suggest that the presented technique could also help in 
the calculation of the oxide injection current. 
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Fig. 7. Electron temperature and concentration profiles at the 
interface of the MOSFET 
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Fig. 8. Distribution function a t  section length N O.fifipm of Fig. 7 

V. CONCLUSION 

A “window” solution of the SHE method of the BTE 
has been presented, which, in combination with suitable 
regional boundary conditions, has been demonstrated to 
lead to high energy electron distributions and impact ion- 
ization bulk currents in good agreement with the results 
of a full device simulation in MOSFET like devices. The 
window typically covers the portion of the channel where 
the electron temperature significantly departs from equi- 
librium. The increase of numerical efficiency is of the or- 
der of more than a factor two. In perspective, the method 
could be completed with a partially automatic procedure 
for the selection of the sub-domain, and used mainly for 
the calculation of the oxide injection current. 
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Fig. 9. Distribution function at the channel interface of the EEPROM 
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