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Abstract-We show that the Spherical Harmonic 
met hod gives results for the space-depedent energy 
distribution function that agree with analytical band 
Monte Carlo simulations on a nanometer length scale, 
but are calculated approximately 1000 times faster. 
We also substantiate the Spherical Harmonic method 
by showing it gives values for MOSFET substrate cur- 
rent that agree with experiment without the use of fit- 
ting parameters. We explain the agreement through 
the use of asymptotic analysis. 

I. INTRODUCTION 

In this work we provide strong evidence that the Spher- 
ical Harmonic (SH) method of device simulation is very 
capable of modeling hot-electron phenomena. Specifically, 
we show the following results which have not previously 
been demonstrated: 

(1) That the SH can also give the energy distribution 
function, and that it agrees with spherical band MC, but 
is approximately a thousand times faster. 

(2) That the SH method accurately models impact- 
ionization and substrate current in MOSFET's, and for 
the case we studied, did not require the use of any fitting 
parameters. 

To demonstrate agreement between SH and MC we 
show results for the calculated energy distribution func- 
tion throughout a a 0.05pm base BJT. The results indi- 
cate that the SH and MC agree over the entire energy and 
space domains, including regions where the electric field 
varies by as much as 200kV/cm over a distance of 0.02pm. 
Our comparisons to experiments are based on a 0.33pm 
effective channel length MOSFET, where we obtain agree- 
ment with substrate current as well as source-drain cur- 
rent in subthreshold, linear and saturation regions. 

We offer an explanation as to why the SH method gives 
results that agree with MC by asymptotically solving the 
equations resulting from the spherical harmonic expansion 
of the BTE. These solutions, as well as the requirement to 
satisfy specific boundary conditions in phase space, indi- 
cate that higher order SH terms decay on the nanometer 
length scale. 

11. SPHERICAL HARMONIC DEVICE MODEL AND 
NUMERICAL SOLUTION 

The SH device model contains the Poisson equation and 
the current-continuity equation for holes. We account for 

electron transport with the Boltzmann equation. 

Vr * [ppdr)Vrd(r) + ~ p V t V r d r ) l =  N4, n , ~ )  (3) 
f(k, r) is the distribution function; p ( r )  is the hole con- 

centration; d(r) is the potential; D(r) is the net dop- 
ing concentration; R(4, n , p )  is the recombination rate; 

= KBT/e; E ,  is the dielectric constant of silicon;p, is 
the hole mobility; A is the Plank's constant. For collisions, 
we explicitly evaluate the collision integral using Fermi's 
Golden Rule and deformation potential theory [l], [2]. 

Now, we express the distribution function in terms of 
the following SH expansion: 

m l  

1=0 m=-1 

Here qm(8 ,$ )  are the spherical harmonic basis func- 
tions, 0 and $ are the polar and azimuthal angles of the 
wave-vector, respectively. flm(T, E )  represents the expan- 
sion coefficients. The eventual goal is to determine the 
coefficients and thereby the distribution function for the 
device. We showed previously that by substituting the 
spherical harmonics expansion for the distribution func- 
tion into the BTE, while taking advantage of the recur- 
rence and orthogonality relationships between spherical 
harmonics, the BTE can be transformed into an infinite 
set of identical expressions for the coefficients [l], [2]. 

(5) 

where V ( E )  = / m / m r ' ( ~ ) ,  Y ' (E )  = d y ( e ) / d ~ ,  Y ( E )  
represents the dispersion relation, and Ei (3  is the electric 
field in the i direction. The sum over i represents the 
Cartesian directions of a 2-D device cross-section in real- 
space. The raising and lowering operators 6: which we 
developed to relate the coefficients are[l]: 
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where l/r is the total scattering rate and y* = y(r, Hf 
Awn). The terms on the RHS of (7) reflect intervalley 
phonon scattering, impact ionization and SHR recombi- 
nation. 

To solve the system, we first discretize the BTE using 
new exponential fitting methods that are calibrated to  the 
density of energy states in silicon. After discretization, 
we solve the model iteratively with various approaches 
including of the conjugate gradient method. 

111. RESULTS 

A .  MOSFET Simulation: Experimental Verification 

We used the above model to  simulate a 0.35pm effective 
channel length MOSFET. Values for the transport param- 
eters used in these calculations are given in Table 1. It is 
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Fig. 1. Subthreshold MOSFET Current: The solid lines were mea- 
sured while the asterisks were calculated by the SH approach 

Next, we calculated substrate current by solving the 
current continuity equation for holes, and determining 
the hole current exiting the substrate contact. The hole 
generation rate due to impact ionization was obtained by 
equating it with the electron generation rate. The impor- 
tant aspect of this was that we determined the impact 
ionization rate directly from the impact ionization term 
in the BTE's collision integral. We used a random K 
model which accounts for the density as provided by the 
psuedopotential method of calculating band structures[4]. 
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Fig. 2. Linear and Saturation MOSFET Current: The solid lines 
were measured while the asterisks were calculated by the SH ap- 
proach 

This model had previously been shown to agree with val- 
ues for the impact ionization parameter aii which was 
developed for homogeneous electric fields. However, the 
model had not been tested for nonhomogeneous fields, 
especially not for an environment as complex as a MOS- 
FET. We found that without any calibration, we calcu- 
lated values for substrate current that were in agreement 
experiment. This agreement is shown in Fig. 3. 
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Fig. 3. MOSFET Substrate Current: The solid lines were measured 
while the asterisks were calculated by the SH approach 

B. BJT Simulation: Monte Carlo Verification 

We demonstrate that the SH approach gives results for 
the energy distribution function that agree with Monte 
Carlo simulations. To show this. we used the above for- 

mulation to simulate a 0.05pm base BJT. We chose the 
BJT because it represented a very aggressive challenge, 
with electric fields pointing in both directions, a narrow 
base of 50nm, with fields varying as rapidly as 200kV/cm 
over distances as small as 20nm. As a benchmark, we 
also simulated the same device using the Monte Carlo ap- 
proach. The input parameters (analytical band structure, 
intervalley, optical and acoustic phonon scattering) were 
identical for both the SH and MC calculations. Since 
the main objective was to determine if the low-order SH 
method could respond to the rapid field variations of the 
BJTs, we performed both the Monte Carlo and the Spher- 
ical Harmonic calculations as post-processor simulations. 

We show some example results below. In Fig. 4 we 
show the doping profile and resulting electric field with 
an applied potential of VBE = 1.OV and VCS = 3.0V. 
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Fig. 4. Doping profile and electric field of BJT used in comparison 
simulations. 

loo1 

0 0.5 1 1.5 2 2.5 3 
Energy (eV) 

Fig. 5. Details of the energy distribution function calculated by 
SH (solid lines) and MC (open circles). Agreement between the 
approaches is very good. 
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In Fig. 5 we compare the details of the energy distri- 
bution function calculated by both the SH and MC ap- 
proaches. In the plots, we compare the SH results (solid 
lines) with the MC results (open circles) at regular inter- 
vals along the device. Clearly, the SH and MC results are 
in very good agreement for the entire distribution func- 
tion. We find this to be an extremely encouraging result, 
considering that the SH method required only lOsec to 
evaluate, while the MC approach took more than lohours 
on a DEC Alpha 266MHz workstation. The large differ- 
ence in CPU time is attributable to the deterministic na- 
ture of the SH approach, while the MC method requires 
considerable time to accumulate reasonable statistics for 
the high energy tail and to surmount the large poten- 
tial barrier at the emitter-base junction. (The MC could 
probably be optimized but our attempts at  statistical en- 
hancement proved unreliable when subjected to scrutiny.) 

Iv. ANALYSIS OF TRUNCATION AND DISCUSSION 

We explain the agreement between SH and MC by 
asymptotic analysis. First of all, for very large values 
of SH index 1, 1 + 1 M I ,  and Fl+1 M Fl. Under these con- 
ditions, equations (5) reduce to the following relatively 
simple expression. 

where X ( H t q 4 )  = v(H+q4).r(H+q$) is a mean free path, 
the value of which depends on energy. For large energy X 
becomes approximately constant, while for lower energies 
X can be approximated as the following piecewise linear 
expression: X(H + 44) = a .  ( H  + 44) + p within [zo,~] for 
a constant H .  By integrating (8) over position space from 
xo to x for a constant H ,  using the chain rule dx = g d c ,  
as well as approximating E ( z )  as constant in the small 
interval, we can obtain 

which simplifies to the following expression in the high 
energy region where X is constant. 

& ( z , H )  = Fl(X0,H)  exp (-y) 
In high energy, (10) shows that Ft will decay exponen- 

tially in x-space with a characteristic length of A. De- 
pending on the transport model one is using, X ranges 
from approximately 2nm to 5nm for energies greater than 
1.5eV in silicon. This indicates that high-energy spherical 
harmonics decay very quickly in comparison with typical 
dimensions in deep submicron devices. For regions of low 
energy and low electric field, (9) ensures that Fi also de- 
cays very rapidly with distance. (While this is not im- 
mediately obvious, it is due to  the relationship between $ 
and E ,  and the fact that X is monotonically decreasing, 
ensures the exponent in (9) becomes very large, and the 

term in the square brackets is always less than unity.) For 
low to moderate energies, where there is a transition from 
a low electric field to a high one, or visa-versa, the mono- 
tonic nature of X again insures that the square bracketed 
term in (9) will be small. 

In addition to the asymptotic analysis for I ,  physical 
boundary conditions also suppress the magnitude of high 
order terms. For example, the physical requirement that 
the distribution function be single valued at the energy 
E = 0 (is not dependent on angle at zero energy), leads 
to the requirement that all SH components with 1 > 0 
must vanish at  zero energy. Furthermore, the require- 
ment that the distribution function is close to Maxwellian 
at the device contacts implies that higher order SH terms 
are negligible at these boundaries. Also, since in silicon 
the scattering rate is fairly high, and since it is a covalent 
semiconductor, we usually take the major scattering rates 
to be isotropic. This leads to scattering which tends to 
give rise to a distribution function which is largely spher- 
ical in nature. Finally, is one examines the generalized 
SH system given by equations ( 5 ) ,  it is clear that the 
equations are only couple to  nearest neighbors in 1.  It is 
therefore difficult to propagate information from low or- 
der terms to higher order ones, thereby minimizing the 
relative importance of higher order SH coefficients. 
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