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Abstract-A criterion for the convergence of Monte 
Carlo simulations is necessary to ensure the reliabil- 
ity of the results and to guarantee efficiency. Due to 
the finite scattering rate in Monte Carlo simulations 
all quantities are in general correlated in time. This 
makes the estimation of the stochastic error of the 
sampled statistics difficult. In this work the theoret- 
ical basis of a method found in literature is explored 
which allows to calculate the stochastic error of sta- 
tionary Ensemble Monte Carlo simulations and which 
requires only a rough estimate of the magnitude of the 
largest correlation time of the sampled quantities. The 
feasibility of the method is demonstrated by applica- 
tion to  substrate current calculations for nMOSFETs. 

I .  INTRODUCTION 

Due to the shrinking device dimensions in MOS tech- 
nologies hot carrier effects and nonlocal transport become 
more and more important for device simulation [l], [a]. A 
method capable of accounting for these effects is the En- 
semble Monte Carlo (EMC) device simulation based on 
the semi classical Boltzmann transport equation and Pois- 
son equation [3], [4], [a]. However, this method exhibits 
not only a numerical error caused by the discretization 
of the phase space, but also stochastic noise inherent to 
the MC method [5]-[7], [3]. In general this error decreases 
with simulation time and MC simulations are performed 
until a certain degree of convergence is achieved. Thus a 
reliable convergence criterion is necessary to avoid on the 
one hand a waste of CPU time in the case that the error 
is overestimated and on the other hand erroneous results 
in the case that the error is underestimated. 

For the convergence estimation the standard deviation 
of the sampled quantity is required [5], [8], [6], [7], [9] 
which in general is difficult to calculate for EMC simu- 
lations, because the particles are correlated among each 
other and in time. The particle-particle correlation is due 
to the self-consistent solution of the EMC method and 
the Poisson equation, carrier-carrier scattering and other 
multi-particle effects or statistical enhancement methods 
[10]-[12]. This unknown correlation makes it difficult to 
divide the particle ensemble into independent subensem- 
bles necessary for an evaluation of the standard devia- 
tion. Due to the finite scattering rate quantities calcu- 
lated with the MC method are also in general correlated 
in time. This problem can be circumvented with a method 
described in [3]. The simulation history is divided into 
subhistories which are much longer than the correlation 

time of the quantity and the sampled data are averaged 
over those subhistories. In this case the resulting sam- 
ples of the different subhistories are nearly independent 
(uncorrelated) and the usual textbook formulas for the 
calculation of the stochastic error can be used [5], [8], [7]. 

In the next section a brief review of the statistics of 
correlated quantities is given which requires the precise 
knowledge of the correlation function [8]. Since the cor- 
relation function is normally not known, the above men- 
tioned method [3] is applied. The procedure is explained 
in detail and its theoretical basis is explored. In the third 
section this method is then applied to the case of sta- 
tionary substrate current calculations for nMOSFETs and 
discussed. 

11. THEORY 

In stationary EMC simulations quantities are estimated 
by averaging not only over all particles of the ensemble but 
also by averaging the quantities over the simulation time 
assuming an ergodic system [8], [3]. This averaging can be 
achieved by integrating the simulated quantity over time 
(Other methods like fixed frequency sampling or before 
scattering statistics [3] can be used as well.) An estima- 
tion of the mean value q of an arbitrary quantity X ( t )  
(a single particle variable (e.g. velocity) or an ensemble 
average (e.g. substrate current)) is given by [8]: 

1 T s t m  

(1) 
- 
7 = Kl X ( t ) d t  , 

where Tsim is the amount of simulated time. This esti- 
mator is unbiased [8], since its expected value equals the 
expected value of the random variable: 

1 Tsrm 

E{V)  = -1 E { X ( t ) ) d t  = 71 (2) 

E { }  is the operation of the calculation of the expected 
value and 7 the expected value of the random variable 

For the calculation of the standard deviation of the es- 
timated mean the correlation function is required [a], [13]: 

(71 = E { W )  PI. 

E { X ( t ) X ( t ’ ) }  = qz + U2C(t, t’) , (3) 

where C(t ,  t‘) is the correlation coefficient and U the stan- 
dard deviation of the random variable X [8]: 

2 = E{ ( X  - 7)2}  . (4) 
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The expected value of the standard deviation of the esti- 
mated mean F2 is [8]: 

In the case that the simulated time Tsim is much larger 
than the correlation time rc and the system is stationary 

00 
PI : 

rc = C(t , t  + T ) d T  (6) 

the following approximation holds under quite general 
conditions [8]: 

. (7) 
& LTs" LTS" C ( t ,  t')dt'dt M - 2% 

Tsim 

Thus for large Tsim the expected value of the standard 
deviation i5: reads: 

1 s i m  

An unbiased estimator for the standard deviation of the 
estimated mean is given by: 

-2 U 

(9) 

The evaluation of this formula requires in general the ex- 
act knowledge of the correlation coefficient which is nor- 
mally not known. Applying approximation (7) yields: 

For the evaluation of this formula the precise value of the 
correlation time is still necessary and the simulated time 
Tsim must be much larger than the correlation time rc. 

To circumvent the problem of the unknown correlation 
coefficient the scheme reported in [3] is utilized. The mean 
value is still estimated with (1) apart from a splitting of 
the integral into N small time steps T :  

. . N  

with: 
1 riT 

and: 
Tsim = N'S A N >> 1 . (13) 

~ 
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The estimator for the standard deviation of the estimated 
mean 5 now reads: 

Equations (11) and (14) resemble the well-known formulas 
for sampling of independent (uncorrelated) random events 
[8]. The difference lies in the definition of the sample. 
Averaging the random variable over the time T which is 
much larger than the correlation time TC not only causes 
the samples Xi  to be (nearly) mutually independent, but 
also ensures that all available information is sampled. 

The expected value of the estimator (14) is: 

- 2 LTSam LTS" C ( t ,  t ')dt 'dt  
TA:., 

If the approximation (7) holds for T ,  the estimator gives 
the correct standard deviation (cf. (8)): 

(16) 
2 T C 2  

E{82} w E{$} w 7 . 
1 sim 

Thus the estimator (14) gives an (approximately) unbi- 
ased estimation of the standard deviation under the con- 
dition that T is much larger than the correlation time rc. 
Since no further information about the correlation coeffi- 
cient is necessary, the estimator can be used as long as a 
rough estimate of the magnitude of the correlation time 
is available. Moreover the scheme works as well when the 
average over T (12) is evaluated with methods other than 
time integration, like before scattering statistics or fixed 
frequency sampling. TO ensure efficiency the sampling fre- 
quency should be larger than the inverse correlation time. 

With the standard deviation of the estimated mean 
the convergence of the MC simulation can be calculated. 
From the central limit theorem it follows that due to the 
averaging, the distribution function of the estimated mean 
approaches a Gaussian distribution [SI. Thus the proba- 
bility (confidence level) that the estimated mean is within 
an interval [q - S, 17 + S] (confidence interval) around the 
expected value is approximately [5], [8], [7]: 

If S is chosen to  be two times the standard deviation, 
the confidence level is 95.45% [5]. In the following the 
(estimated) relative error: 

2 8  2 a  S 
rl 7 7  

re,.,. M M - - - - 

will be used [SI. MC simulations are stopped, after a given 
relative error has been achieved. 
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Fig. 1. Correlation coefficients of the substrate current in a 0.16pm- 
nMOSFET (Vgate = 1.51.') and of the impact ionization coefficient 
in a homogeneous bulk system. 

111. DISCUSSION AND RESULTS 

Equations (1 1), (14) and (18) have been implemented 
into the in-house full-band EMC device simulation pro- 
gram FALCON for the evaluation of substrate currents in 
nMOSFETs [14]. With this program stationary nonself- 
consistent (regarding the electric field) simulations for sil- 
icon devices at  room temperature have been performed 

1 the correlation coefficient of the substrate 
current is shown for a O.16pm-nMOSFET (Vgate = 1.5V). 
Moreover correlation coefficients of the impact ionization 
coefficient in a homogeneous bulk system are shown. The 
corresponding correlation times are 35fs (Vdrain = 1.5V), 
78fs (Vdrain = 3.5v),  57fs ( E  = 100kV/cm), and 117fs 
( E  = 3OOkV/cm). The increase of the correlation time 
with the electric field or Vdrain can be understood with 
the help of Fig. 2. In this graph the correlation time for 
a particle ensemble which is injected with a given energy 
into a field free bulk system (quantum yield experiment) 
as a function of this energy is shown. High energetic par- 
ticles have a longer correlation time than low energetic 
particles. Since a high electric field results in a large frac- 
tion of high energetic particles, the correlation time of the 
substrate current increases with the electric field. 

Since the correlation time exhibits a complicated de- 
pendency on the simulation conditions, it is not possible 
to obtain the correlation time before the actual MC sim- 
ulation. On the other hand only a rough estimate of the 
correlation time is required to ensure that the sampling 
time T is much larger than the correlation time. With 
Figs. 1 and 2 a good guess of the magnitude of the cor- 
relation time of impact ionization in silicon can be made 
which is about 100 fs. 

In Fig. 3 the relative error (18) of the impact ionization 
coefficient for a homogeneous bulk system is shown as a 

~ 5 1 ,  ~ 4 1 .  
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Fig. 2. Correlation time of the impact ionization coefficient for a 
field free homogeneous bulk system as a function of the injection 
energy. 

function of the time T .  The total simulated time Tsim is 
lOOOps, the number of particles 100, and the electric field 
300kV/cm. Assuming that the correlation coefficient in 
this case can be approximated by an exponential function 
(C( t ,  t ') = exp(--lt - t ' l /~c ) )  the relative error estimated 
with (18) can be calculated: 

As expected the relative error saturates for large times T 
and approaches the correct value of about 1.44% apart 
from statistical noise. For times T which are smaller than 
Ips the condition that T must be much larger than the 
correlation time TC (here 117fs) is violated. Thus C? does 
not equal the standard deviation of the estimated mean 5 
and the relative error is considerably underestimated. On 
the other hand the time T should not be too long, since 
this reduces the total number of samples and increases 
therefore the statistical uncertainty of the estimated stan- 
dard deviation. 

In Fig. 4 the substrate current of a O.16pm-nMOSFET 
is shown. The calculations are converged with a proba- 
bility of 95% within f 10%. The time T has been chosen 
to be lops, considerably larger than the correlation time 
of the substrate current. The given CPU time values are 
for a Sun Sparc 20 workstation. The dependence of the 
CPU time on the drain voltage results from the fraction 
of high energetic carriers which increases with the drain 
voltage, thus improving the signal to noise ratio. Since no 
statistical enhancement method has been used for these 
simulations, the CPU time increases considerably when 
the threshold energy of impact ionization is approached. 
This demonstrates clearly that it is impossible to guess 
the necessary simulation time without a convergence es- 
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Fig. 3. Relative error of the impact ionization coefficient as a func- 
tion of the time T for a homogeneous bulk system, an electric field 
of 300kV/cm, 100 particles and a total simulated time of 1OOOps. 

timation. 
Since the simulations are stopped when a certain level 

of convergence is achieved, the CPU time consumption is 
minimized. This resulted in the shortest CPU times re- 
ported so far for substrate current calculations [9], [14]. Of 
course the method is not limited to  the case of substrate 
current calculations, but can be used for other quantities 
like drift velocity, relaxation times, gate currents as well. 

IV.  CONCLUSIONS 

By applying the basic principles of estimation theory 
the theoretical basis of the st andard-deviation-estimation 
method reported in [3] has been clarified. It has been 
shown that the scheme can be used in an easy and reli- 
able way for the estimation of the stochastic simulation 
error of stationary Monte Carlo simulations. The estima- 
tor has the advantage that only a rough estimate of the 
magnitude of the correlation time is necessary which can 
be obtained easily. Furthermore the estimator is efficient 
because all information available in the Monte Carlo sim- 
ulation is sampled. The method is universal and its fea- 
sibility has been demonstrated for the case of substrate 
current calculations. 
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