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Abstract-We present a computer-aided-design method 
for constructing a circuit for a Boltzmann-machine 
neuron, utilizing single-electron tunneling (SET). We 
have found, through computer simulation, that a stochastic 
response unit circuit can be made in a simple 
configuration using SET junctions, and the probability for 
an output of 1 can be controlled by the input voltages. 

I. INTRODUCTION 
Computer simulation is an essential and useful tool for 

developing functional devices for next-generation 
nanoelectronics. [ 11 

This paper presents one instance of this - a computer-aided 
design of single-electron Boltzmann machine neuron circuits. 
The Boltzmann machine is a neural network that uses 
stochastic or probabilistic operation of neurons. Ordinarily, it 
is dficult to implement using conventional electronic devices. 
But we have found, through computer simulation, that the 
stochastic neuron operation can be easily achieved by means 
of single-electron circuits. 

II. STABILITY DIAGRAM OF THE SINGLE-ELECIXON- 
" N E L L N G  CIRCUIT 

The single-electron-tunneling (SET) circuit [2][3] is an 
electronic circuit that consists of tunnel junctions and 
capacitors. A SET circuit has a number of nodes that are 
interconnected by means of tunnel junctions. Its internal state 
is determined by the configuration of electrons (i.e., the 
pattern in which the excess electrons are distributed among 
the nodes). The circuit varies its electron configuration 
through tunneling in response to the input, and thereby 
changes its output voltage as a function of the input. 

A SET circuit changes its state to decrease its fiee energy; 
hence the circuit operates as an organic whole. Therefore any 
SET circuit has to be designed laking into consideration the 
global stability of the whole circuit. Because a SET circuit has 
complex internal states, a "guide map" is needed to grasp the 
overall situation of the circuit. The guide map or tool for this 
purpose is known as the stability diagram, the concept of 
which was first introduced by Likharev [3]. It is a diagram 
that illustrates the internal states of a SET circuit in a 
multidimensional space of circuit variables (namely, the 
voltages of powers and inputs, and the capacitances of tunnel 
junctions and capacitors). Looking at a stability diagram, we 
can see the internal state of the circuit as a function of the 
circuit variables. Given the stability diagram of a SET circuit, 

we can determine optimum values of circuit parameters so 
that the circuit will produce required functions. 

The stability diagram can be calculated analytically for a 
simple SET circuit composed of a few junctions. But a circuit 
of greater complexity is dScult to calculate on paper, so 
computer simulation is needed. We have therehre developed 
a simulator to draw a stability diagram for a given circuit. 

III. STABILITY-DIAGRAM SIMULATOR 
The simulator that we developed calculates the stability 

diagram for a given circuit as follows. We first assume a 
current state for the circuit and then a set of values of circuit 
variables. After that, we calculate the energy change of the 
circuit for each possible tunneling. If all the energy change is 
incremental, we can consider the current state to be stable 
under this set of circuit variables. If the energy is reduced for 
one or more tunnelings, then we can consider the current 
state to be unstable under this set of circuit variables. We call 
this procedure a trial here. After ascertaining the stability of 
the state for a trial, we change each circuit variable slightly, 
and then repeat the trial calculation for a new set of circuit 
variables. By scanning the entire space defined by the 
variables, we can draw the stability diagram .for the assumed 
state of the circuit. The same sequence is then repeated for 
the other states. Through these iterations, the complete 
stability diagram can be developed. 

IV, B O L E M A "  MACHINE 
The Boltzmann machine is a kind of feedback neural 

network that can solve various problems in subjects such as 
combinatorial optimization, classilication, and association. 
Figure l(a) presents a schematic diagram of a Boltzmann 
machine neural network. This consists of a large network of 
neurons that are interconnected bidirectionally with signal 
connections having various connection strengths. Each 
neuron receives input signals fiom other neurons and sends 
output signals to other neurons. The neuron has two output 
states, either 1 or 0, and changes its state according to the 
inputs, following a stochastic transition rule; i.e., the output is 
a random 1-0 bit stream. All neurons operate in parallel and 
each adjusts its own state to those of all the others. M e r  
some processing time, all the neurons finally reach maximal 
consensus about their individual states, and the whole 
network then stabilizes in a global configuration. For details, 
see [4] and [SI. 
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The structure of mathematical problems such as 
combinatorial optimization can be mapped onto the structure 
of a Boltzmann machine by deciding the connection pattern 
and connection strengths of the neurons. In this way, finding 
the optimal solution to a problem can be reduced to finding 
the optimal codiguration of the Bohzmann machine. The 
unique and important feature of the Boltzmann machine is its 
method of operation, which uses stochastic neuron-state 
transition and simulated annealing algorithms. This allows the 
Boltzmann machine to reach a configuration that is globally 
optimal (and thereby an optimal solution) without flling into 
configurations that are only locally optimal. @is is a problem 
with other neural network models.) Because of this, the 
stochastic output of the neuron is the most important kature 
of the Boltzmann machine. 

The basic concept of the Boltzmann machine neuron is 
illustrated in Fig. le). It has two constituents, a 
sum-of-product unit and a stochastic-response unit. The 
sum-of-product unit has a number of input connections and 
local memory that stores connection strengths w, (positive or 
negative analog values). Also, it receives input signals x, (1 or 
0)  (and bias input that controls the threshold of the neuron) 
fiom other neurons and produces the weighted sum of inputs 
s (= C, w, x, t w,,). The stochastic-response unit is peculiar to 
the Boltnann-machine neuron. It generates an output, 1 or 0, 
updating the output state every moment, following a given 
probability that depends on the input value of s. The 
probability function for a state 1 is usually chosen to be the 
sigmoid function, expressed as 

where T (temperature) is the control parameter that slowly 
decreases fiom a large value to zero during the simulated 
annealing process. (Here the "temperature" need not be 
thermal temperature; any factor that can change the 
dependence of f(s) on s can be used.) The shape of the 
function is illustrated in Fig. 2 forf(s) = 1/(1 t exp(s/T)), with 
the value of T as a parameter. Convergence of the network 
systems requires the capability of varying "temperature l" 
with continuity by means of a control signal. The probability 
function need not necessarily be this function; any monotonic 
nonlinear hnction can be used, provided that it becomes 1 (or 
0)  at large positive values of s and becomes 0 (or 1) at large 
negative values of s. 

A Boltzmann-machine LSI for practical use must integrate 
thousands of neurons on a chip. The crucial problem in 
developing such LSIs is how to implement the generation of 
randomness for the stochastic operation. Every neuron has to 
have its own randomness generator because stochastic 
independence between the neurons is required. But presently 
available circuits for generating randomness, such as the 

n 

(4 
I I I 
I I I 

7 Sum-of-product unit Stochastic-: 
I I response I ; unit I 1 (bias input) I I I 

\ I 1  

I 

(b) 
Fig. 1 Boltzmann-machine neural network and its neuron 
(a) Concept of the network, (b) function of a Boltzmann- 
machine neuron. 
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Fig. 2 Probability functionf(s) as a function of a weighted 
sum of inputs s. Illustrated isf(s) = 1 / (1 + exp(s/T)) , with 
T as a parameter. 
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thermal noise amplifier and the random bit generator, consist 
of many devices and consequently require a large volume of 
space; hence, they cannot be used for LSI implementation. 

To overcome this problem, we have presented the idea 
that the inherent stochastic character of SET can be used for 
implementing the stochastic-response unit of the 
Boltzmann-machine neuron [6] .  We will describe in the next 
section a single-electron neuron circuit that gives practical 
form to this idea. The point is to operate a SET circuit in 
unstable regions to produce stochastic output. A SET circuit 
in unstable regions varies its internal state between two more 
states, so an output of a random 1-0 bit stream can be 
expected. If the probability for an output 1 (or 0)  can be 
changed in response to an input, then this phenomenon will 
be useful for the stochastic-response unit of the 
Boltmann-machine neuron. 

V. COMPUTER-AIDED DESIGN OF SINGLE-ELECI'RON 
NEURON CIRCUIT 

The stochastic-response unit has to be designed in a such 
configuration that the "temperature ?I1 of the probability 
function can be changed by a control voltage. For this 
purpose, we modiiied the SET inverter circuit proposed by 
Tucker[7]. The circuit we propose for a stochastic response 
unit is illustrated in Fig. 3. The circuit has three island nodes 
(L, My and N), and its internal state is expressed by the 

numbers of excess electrons (I, m, n) stored on the three 
nodes respectively. The circuit receives a voltage input s fiom 
a sum-of-product unit to generate its internal state and 
produces the corresponding voltage output y. The bias voltage 
V, adjusts the threshold of the circuit by adding an ofbet to 
the input, and the value of the "temperature TI is changed by 
the control voltage Vdd. 

For this circuit configuration, we designed the stability 
diagram for operating the circuit under unstable conditions 
around zero input. A desirable set of the capacitance 
parameters is: 

Assuming this capacitance set, we drew the stability diagram 
in a three-dimensional space of three voltage variables (s, V,, 
and Vdd). In Figs. 4 (a) and @), a part of the diagram is 
illustrated on a plane of the two voltage variables; s and V,. 
Four plain-colored regions, are stable regions, in which the 
circuit stabilizes at internal state (-1, -LO), (0, -1,O), (0, 0, 0), 
and (0, 0, 1); the former two states produce high positive 
output voltage (an output I l l ) ,  while the latter two produce 
low output voltage (an output '0'). The approximate output 
voltage for each state is illustrated by putting a letter (H or L) 
before the electron-number set. The shaded region is an 
unstable region in which electron tunneling fiequently occurs, 
and the circuit consequently alternates two or more internal 
states. 

797- 
Fig. 3 Single-electron circuit for the stochastic response unit. 
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Fig. 4 A stability diagram of the circuit of Fig. 2. Capacitance 
parameters are: Cjl = 1 aF, C72 = 2 aF, Cl  = 3 aF, C2 = 9 aF, 
Cout = 24 aF. The value of Vdd is (a) 6.10 mV and (b) 6.30mV. 

203 



We operated the circuit so that the operating point moved on 
the segment PQ illustrated in Fig. 4 (a). It can be expected 
that the probability for generation of an output 1 can be 
changed from 1 to 0 continuously by moving the operating 
point from P to Q. We simulated the circuit operation by 
using the Monte Carlo method[S] combined with the basic 
equations for electric-charge distribution, charging energy, 
and tunneling probability. The temperature is assumed to be 
0 IC A simulation result is illustrated in Fig. 5 for the 
condition of Fig. 4 (a) (i.e., V,, = 6.10 mv). Figure 5 shows 
the output voltage waveform (a random 1-0 bit stream) for 
two instance values of the input voltage: (a) s = -1.00 mV 
(point X in Fig. 4 (a)) and @) s = 1.00 mV (point Y in Fig. 4 
(a)). It can be seen that the probability for an output 1 can be 
changed by the input s, where the state of high output is 
dominant for a low value of s, while the state of low output is 
dominant for a high value of s. Intermediate states can also be 
generated, but this is not a problem because their duration is 
always short regardless of the input voltage value. In this 
example, the circuit changes its internal state in a cycle of YO, 

Similar operation can be observed in other V, values. 
The probability for an output 1 is illustrated in Fig. 6 as a 

function ofthe input voltage, with V,, (and V,) as a parameter. 
It is obtained by observing the output 1-0 stream for 1 ,us and 
measuring the total duration of an output 1. It can be seen that 
a probability function required for the Boltzmann-machine 
neuron can be obtained very easily. It should be noted that the 
"temperature 7'' of the sigmoid characteristic can be 
controlled by changing the value of V,, . This controllability of 
the "temperature 7" is necessary for the network system 
operation. 

0,O) -+ L(-l ,O, 0) 3 H(0, -1 ,O) -+ H(0, -1 , l )  + YO, 0,O). 

State (0,-1 ,0) 
/ State (o,o,o) state (o,-I , I )  state (-1 ,o,o) 

VI. CONCLUSION 
We presented a computer-aided-design method for 

constructing a circuit for a single-electron Boltzmann- 
machine neuron circuit. We developed a stability diagram 
simulator that plots the stable/unstable regions of a SET 
circuit on the circuit-variable coordinates. Utilizing the 
simulator, we designed the SET neuron circuit in a simple 
configuration. Using the single electron circuits, we will be 
able to fabricate very compact Boltzmann-machine =Is. 
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Fig. 5 Output voltage waveform simulated for the two input 
voltages shown in Fig. 4(a): (a) s = -1.00 mV ('point X) and @) s = 
1.00 mV (point Y). Tunnel resistance is 5MQ for three junctions. 
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Fig. 6 The probability for generating an output 1 is illustrated as 
a function of the input voltage s. Curve 1 is for Vdd = 5.76mV 
(Vb = 5.50 mv), curve 2 for Vdd = 6.10 mV (Vb = 5.80 mV), 
curve 3 for Vdd = 6.30 mV (Vb = 6.10 mV), and curve 4 for 
Vdd = 7.50 mV (Vb = 8.50 mV). 

204 


