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Abstract- This paper presents an original methodology for 
calibrating Technology Computer-Aided Design (TCAD) 
simulators. This approach associates physical analysis of 
models, statistical analysis of data, and systematic use of Design 
of Experiments. This new concept, inspired by the Taguchi's 
methodology, allows to minimise the difference between 
simulations and measurements while being the less sensitive to 
the fluctuations of the manufacturing process. The 
methodology fits well with economic constraints by only using 
the existing data, and by reusing previous calibration works. 

I. INTRODUCTION 

In this paper we propose an original strategy to obtain a 
set of calibrated model parameters for predictive simulations. 
This methodology associates Design of Experiments (DOE) 
with Response Surface Method (RSM) but also advanced 
concepts of statistical analysis: D-optimal filterhg and 
Taguchi's method [1,2]. It has the following characteristics: 
insensitivity to process conditions, optimal use of existing 
experimental results, rigorous statistical analysis of the data, 
and clever selection of the model parameters. Moreover, its 
capability to continuously incorporate further data confers an 
increasing robustness on the methodology. The strategy may 
be adjusted to any type of model and is illustrated with the 
examples of a numerical oxidation model and a mobility 
model for electrons. 

11. THE METHODOLQGY 

One of the greatest desires of device engineers is to 
dispose of physically based simulators with meaningful 
predictive capabilities. One way to improve prediction is to 
implement new models containing more accurate physics in 
simulators, and to adjust their parameters. Unfortunately, 
time, money and relevant experimental data are rarely 
available to achieve this task before processing the new 
device generations. This leads to a real need for a pragmatic 
method for calibrating commercially available simulators. 

DOE combined with TCAD are now classically used for 
process optimisation [3,4]; attempts have also been done to 
use them for calibrating [5] model parameters. These 
approaches suffer from an inherent weakness: they don't take 
into account the global behaviour of the experimental domain 
but only "test points", so the resulting calibrated parameter 
set is only valid for the experimental conditions that were 
used for calibration. 
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The first key point of the method we propose overcomes 
this difficulty: it makes the calibration independent of the 
experimental conditions in the domain of interest. For this 
purpose we use the Taguchi method which allows to optimise 
a process, while making it robust with regard to experimental 
variability. The originality of our approach is to define 
Taguchi's control factors as the model parameters of the 
simulator, and the noise factors as the process parameters. A 
consequence of this approach is that the fluctuations due to 
equipments in real fabs, which are not negligible, will not 
affect the calibration. 

The second key idea of our methodology is to obtain a 
calibration from the optimal use of existing data, without 
running any complementary experiment: to reach this 
objective, we use D-optimal filtering, which ensures the best 
coverage of a given experimental domain. 

For each type of physical model of simulators, the flow 
consists of three principal steps as outlined in Fig. 1. 

Initially, model and process parameters follow parallel 
treatments. First, they are chosen and sorted according to the 
physical analysis of the model and the relevance of existing 
data. 

Secondly, a DOE is constructed on the model parameters 
of the simulator. Concerning experiments, as stated above, a 
D-optimal filtering permits to choose the necessary set of 
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Fig. 1 : Outline of the methodology 



process parameters, among the previously sorted 
experiments. Then, following the requirements of the 
Taguchi method, responses and control factors are defined. 
The responses must be chosen to be the most sensitive to the 
studied model, and exclusively dependant on it. 

Finally, using the simulation results and subsequent 
optimisation, the analytical modelling of responses versus the 
model parameters of the simulator supplies the set of 
calibrated parameters, the less sensitive to the experimental 
conditions. 
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111. CALIBRATING NUMERICAL OXIDATION 
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A. Application of the Methodologv 

The growth of Si02 is modelled following the Deal and 
Grove relationship, modified to account for the fast initial 
growth regime. The oxide thickness (Tox) obeys the law: 

+ Rth, 
dTox - B 
- - ,  

dt A + 2 Tox 

where B/A and B are respectively the linear and parabolic 
constants, and Rth the growth rate of the initial thickness. 

In the case of oxidation, the number of experiments 
available at our site is quite high, and the complexity of the 
furnace recipes is a real difficulty: each recipe contains many 
oxidising steps, with different time, temperature and gas 
flows characteristics. The calibration of the model over the 
whole range of these experimental conditions would lead to 
about fifty model parameters and a tenth of process 
parameters to consider. This is obviously not tractable, so we 
decided to classify the recipes: we focus in this paper on the 
calibration of dry oxidation of low doped silicon below 
950°C, in presence of Chlorine. 

In the chosen experimental range B/A, and Rth express as: 

Rth = to exp (9) exp( $) (3) 

As the parabolic regime will not be reached for the 
thickness range in this work, the parabolic constant B is kept 
to its default value. In (2)  and (3) T is the temperature, and 
Po2 the partial oxygen pressure. The model parameters are 
indicated in bold fonts. 

The selected oxidation recipes consist in two oxidising 
steps with some additional inert anneals. The experimental 
parameters are the durations of the two oxidising steps, the 
HC1 partial pressure and a bloc variable indicating the step in 
which HCl is introduced. We assumed a linear model on 

these 4 process parameters, the D-optimal sorting chose the 6 
most relevant experiments among the set of candidates. 

For the 8 model parameters, an algorithmic DOE allows to 
build a quadratic model with 79 trials. The range of 
parameters is given in Table 1. 

TABLE 1 
PARAMETERS RANGES DETERMINED FROM DEFAULT VALUES [6]. 

~~ 

I Model oarameter I Minimum value I Maximum value 1 
IO (pmlmin) 60216 63305 

to (pmlmin) 

0.006 0.0078 

Finally we mixed these 2 designs to define the inner and 
outer arrays of the Taguchi design. The 474 resulting 
numerical simulations were performed and automatically 
managed by a commercially available software package 161. 

Here the responses are the differences between simulated 
and measured oxide thickness. The objective of the Taguchi 
method is to maximise the signal to noise ratio 2: 

where n is the number of experiments of the outer array. 

B. Results 

The following regression model was found for Z (centred 
parameters): 

Z= 1.9 + 8.4 le - 2.9 te - 0.39 L~cl(950)  - 138 le.te 
+ 2954 1e.tl -k 17 le.L~cl(950) - 5.5e-7p.tO 

- 13 70 te. tl + 6 L~cl(950) .  L~ci(900)  - 2 12 le2 

- 1 . 4 4 ~ ~  

This model was maximised to obtain the optimal point. 
The improvement of the simulation due to calibration is 
evaluated by the mean square difference between simulated 
and measured thickness over the whole set of experiments. 
We obtained a set of calibrated model parameters leading to a 
simulation accuracy of 3%, now insensitive to process 
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fluctuations. These parameters are summarised in Table 2. 

Model parameter 

IO (pm/min) 

le (em 

TABLE 2 
DEFAULT AND CALIBRATED OXIDATION MODEL PARAMETERS. 

default value calibrated value 

61761 60326 

2.0 2.04 

tl (Fm) 

I t~lum/min) I 6.57e+6 I 6.24e+6 I 

0.0069 I 0.007 
I te (em I 2.37 I 2.31 I 

D 0.75 0.9 

I LHCK900) I 1.75 I 1.61 I 
LHCl(950) 1.618 1.8 

Iv .  SECOND APPLICATION: LOW FIELD MOBILITY OF 
ELECTRONS 

The same methodology has been applied for the 
calibration of the low field mobility of electrons (CVT 
model) [6] ,  on a 0.25 pm technology. In this case, 8 
parameters of the model have been calibrated, and 27 
experimental splits of channel and/or source-drain 
architectures have been used. The chosen responses are 3 
SPICE model parameters (MO, RT, Ilin) for the linear current 
(519 (6): sum of Z 

po cox w 
with MO = 

L 

36.93 40.14 

They are related to the microscopic phenomena included 
in the CVT mobility model [6 ] .  These parameters are given 
with their ranges in Table 3. 

B (cmls) I 4.75e+7 

TABLE 3 
PARAMETER RANGES FOR THE MOBILITY MODEL 

9.5e+7 
C 
7 

u0 (cm2/NsN 

1.74e+5 5.22e+5 
0 0.375 

26.1 156.6 
Cr (cm9 

a 

Table 4 gives the calibrated parameters and Table 5 shows 
the improvement of the signal to noise ratios for each 
response evaluated with the increase of the ratio Z. 

4.84e+ 16 I 2.904e+l7 
0 1.36 

TABLE 4 
DEFAULT AND CALIBRATED MOBILITY MODEL. PARAMETERS 

P 

TABLE 5 
IMPROVEMENT OF SIGNAL TO NOISE RATIOS. 

2 I 4 

Default Optimum 

13.33 13.40 

10.37 

Z Ilin 15.30 16.37 

V. CONCLUSION 

We have proposed a global strategy for optimising TCAD 
simulators and reach prediction. This approach overcomes 
the insufficiencies of the physical models by tuning the 
parameters of the simulator, but casts off the effect of process 
fluctuations, thanks to the Taguchi method. Then, the same 
set of model parameters is expected to be convenient, even 
when changing to the further device generation. Therefore, 
our methodology clearly appears wafer-saving. The 
calibration flow can be carried out using existing 
experimental data without extra experiments, and updating is 
easy by incorporating any new results as soon as available: 
the initial work is then reusable and enriched at each iteration 
of the procedure. These advantages of the methodology 
make it suitable to be involved within an industrial 
manufacturing environment. 
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