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Abstruct- A matrix-implicit multi-level Newton method for 
black-box self-consistent analysis of 3-D microelectromechanical 
systems (MEMS) is described. The approach is shown to con- 
verge very rapidly and is much faster than relaxation algorithm 
for tightly coupled problems. In addition, the matrix-implicit ap- 
proach is used to derive a computationally efficient technique to 
extract the fundamental frequency as a function of applied voltage 
for a microstructure. While this paper focusses on coupled elec- 
tromechanical analysis, the proposed algorithm can be extended 
to include several coupled domains encountered in MEMS. 

I. bTRODUCl'ION 

Microelectromechanical devices such as microvalues, acceleration 
sensors, gyroscopes, or display micromirrors, use electrostatic forces 
to move micromachined aluminium and single- or poly-crystalline sil- 
icon. Since most of the structures of interest are geometrically compli- 
cated, electromechanically coupled, and inherently three-dimensional, 
microelectromechanical CAD (MEMCAD) tool developers have been 
focussed on improving the usability, efficiency and robustness of cou- 
pled 3-D electromechanical analysis [14], [7], [SI, [3], [I]. However, 
in the last few years micromachine design techniques and applications 
have beenexpanding rapidly, creating interest in coupled-domain sim- 
ulation which not only allows for elastic parts and electrostatic forces, 
but also includes magnetic and fluidic forces, heat transfer, and piezo- 
electric effects. This large number of possibly coupled domains, 
combined with the existence of commercially-available single domain 
simulation software, makes approaches to coupled-domain simulation 
which require no modification of the single domain simulators ex- 
tremely attractive. Nonlinear relaxation is the simplest of these black- 
box approaches, and it has well-known convergence problems [ 111. 

In this paper we describe a matrix-implicit multilevel-Newton 
method for black-box coupled-domain analysis, and give particulars 
for the case of self-consistent electromechanical analysis. We begin 
in the next section by briefly describing electromechnical analysis, 
and the standard black-box approaches. In Section I11 we describe a 
multi-level Newton approach as a black-box technique for electrome- 
chanical analysis and a computationally efficient approach to extract 
fundamental frequencies is presented in Section IV. Numerical results 
are presented in Section V and conclusions are given in Section VI. 

11. BACKGROUND 
A. Electromechanical Analysis 

The elastic deformation of the structure can be predicted by study- 
ing nonlinear elastostatics (or elastodynamics, as the case may be). 
Commercial simulators such as ABAQUS [9] typically use finite ele- 
ment methods to solve nonlinear force-balance equations. Somewhat 
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more specifically, the elastostatic force-balance equations can be writ- 
ten as 

Fs(u)  + F*(q) = 0, (1) 

where U is the vector of discretized structural displacements, F, relates 
structural displacements to forces due to strain, and F,(q) relates the 
surface charge to the surface electrostatic forces. From an input-output 
perspective, elastostatic analysis can be written as 

U = Rrvf(q) 

where RM ( q )  is a black-box elastostatic solver which computes defor- 
mation as a function of the surface charges, q. Note that the elastostatic 
equations are nonlinear and typically a Newton method is employed 
to compute the displacement, U. 

Given conductorpotentials, the surface charge can be computed by 
solving the electrostatic equations in the conductor exterior. Commer- 
cial simulators often use boundary-element methods, typically com- 
bined with accelerated iterative methods [lo], [ 121. Mathematically, 
the solution of the electrostatic equations can be represented as 

q = RE(u) (3) 

where RE(u)  denotes a black-box electrostatic solve to compute the 
surface charges, q, given the conductor geometry, U, and applied 
potentials. The dependenceof the electrostatic solve on U is explained 
by the change in the conductor geometry as it undergoes deformation 
due to electrostatic forces. 

Coupled electromechanical analysis requires the self-consistent so- 
lution of equations (2) and (3). With the availability of black-box 
solvers such as ABAQUS for mechanical analysis and FASTCAP for 
electrical analysis, coupled electromechanical analysis has been im- 
plemented with the black-box algorithms discussedin the next section. 

B. Nonlinear Relaration 

A simple black-box approach to coupled electromechanical analy- 
sis is the nonlinear Gauss-Seidel relaxation algorithm. In this approach 
the data is passed back and forth between black-box electrostatic and 
elastostatic analysis programs until a converged solution is obtained. 
The relaxation procedure is summarized below: 

Algorithm 1: Relaxation Technique 
IC = l , U k  = 0. 
Repeat 

Compute qk = R E ( u ~ ) .  

Compute J k + l )  = RM(qk). 
k = k + l ;  

until 112 - ak+lll < e. 

As is evident from the above procedure, black-box approaches 
based on relaxation are easily implemented for coupled electrome- 
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chanics, and the extension to coupling other domains is straight- 
forward. Sufficient conditions for relaxation convergence [l 11 is that 

(4) 

which will be satisfied if the structure is sufficiently mechanically 
pliant and the applied potentials are sufficiently small [15]. More 
precise conditions for relaxation convergence can be given for classes 
of geometries, as in [16]. Nonlinear relaxation converges sufficiently 
frequently to be quite useful for electromechanical analysis, but as 
will be shown in the results section, the relaxation algorithm can fail 
for micromachined structures. 

nI. THE MULTI-LEVEL NEWTON ALGORITHM 

One approach to curing the relaxation convergence problem for 
electromechanical analysis is to switch to a fully-coupled Newton 
method [3], [l], [2]. The main difficulty with suchmethods is that they 
require more access to the Jacobian and to coupling terms than is usu- 
ally available from black-box simulators. Instead, for domains which 
interact only at surfaces (this excludes magnetic fields for example), 
it is possible to use a matrix-free surface-Newton method [U]. The 
main difficulty with surface-Newton methods is that their performance 
is much too sensitive to one of the perturbation parameters to be of 
practical use. In this section we describe a matrix-implicit multi-level 
Newton technique for black-box analysis of coupled electromechan- 
ical equations. The multi-level Newton technique converges rapidly 
even when relaxation fails, and is not sensitive to its associated per- 
turbation parameters. 

In the multi-level Newton technique, the coupled electromechan- 
ical equations are solved by employing a nested Newton-Raphson 
method. The outer-Newton iteration solves the following residual 
equation 

In equation (3, RE ( U )  is the charge on the conductors for the conduc- 
tor geometry displaced by U ,  RM ( q )  is the structural displacement due 
to the electrostatic forces generated by q, and if both q - RE ( U )  and 
U - R;w ( q )  are zero or approximately zero, then the charge q and the 
displacement U are a self-consistent solution to the electromechanical 
system. Note that because the residual R is defined in a certain way 
it can be computed using black-boxes. The Jacobian for the residual 
given in equation (5 )  is given as 

The Newton-update linear system in Algorithm 3 can be solved with 
Krylov-subspace based iterative methods like GMRES [ 131. In that 
case, only matrix-vector products are needed, but not the explicit 
Jacobian. 

The matrix-vector product required in the Krylov-subspace based 
iterative solver can be computed approximately using only black-box 
elastostatic and electrostatic solves. as in 

where B is a perturbation parameter whose value is selected so as to 
insure an accurate approximation. In particular, 6 is selected from the 
range given by 

e = sign(x * T )  * min(1, #, W) 
a E (0.01,OS) b E (0.1,l). 

when a matrix-vector product aR/ax . T is to be performed. 
To summarize, the coupled nonlinear system (5) can be solved 

using Newton's method. Each Newton iteration requires the solution 
of the Newton-update linear system, and this linear system can be 
solved with a Krylov-subspace algorithm. Each iteration of a Krylov- 
subspace algorithm requires a matrix-vector product which can be 
computed using black-box elastostatic and electrostatic solvers. Since 
elastostatic solvers typically use Newton's method, we describe the 
combined approach as a multi-level Newton method. 

N. FUNDAMENTAL FREQUENCY COMPUTATION 

Once the equilibrium position has been computed for a given bias, 
the structure's resonant frequency can be estimated as the square root 
of the dominant eigenvalue of the product of mass matrix and the in- 
verse of the linearized electromechanical system. This relation follows 
from the low damping assumption and from the fact that the quasistatic 
forces are directly proportional to the product of the mass matrix and 
the second time derivative of the displacements. A matrix-free Power 
method is employed to compute the dominant eigenvector. Denoting 
A? and I? to be the mass and effective stiffness matrices of the lin- 
earized system, respectively, the fundamental mode and frequency are 
computed as 

With the definition of the residual and the Jacobian in (5 )  and (6) 
respectively, the multi-level Newton technique for solving the coupled 
electromechanical equations can be summarized as follows: 

Algorithm 3: Multi-level Newton Technique 
IC = l , u k  = O , q k  = 0. 
Repeat 

Solve J ( u k ,  q k )  { 2 } = -R(uk,  q k )  forb,, 6,. 

Set uk+' = U' + 6,. 
Set qk+' = qk + 6,. 
k = k + l ;  

until lluk - uk+'ll < e .  

wi = I /  max (I?-*A?x~')) (9) 

where Xii) is the zth approximation to the fundamental mode shape 
and W? is the fundamental frequency. Note here that multiplication 
by I?' is peformed by solving the linearized static equations using a 
matrix-free GCR or GMRES. To multiply a vector v by k-' we solve 

dFs d F   RE 
au aq au 

[- + >-]y = v 

using a matrix-implicit method similar to that in Section 111. 
For the examples examined in this paper, no more than four power 

iterations were needed to accurately determine the fundamental mode 
shape and frequency. For more general examples, and to determine 
higher order modes, it is likely that a more general Amoldi-based 
matrix-free approach will be necessary. 

126 



V. RESULTS 

Numerical results are presented for two examples: a beam over 
a ground plane and a comb drive structure. The performance of the 
multi-level Newton and relaxation algorithms is examined for both 
the examples. In particular, the convergence characteristics and the 
simulation times are compared. 

The beam example considered here is 500 pm long, 50 pm wide, 
14.35 pm thick and is positioned 1 pm above the ground plane. The 
beam is discretized into 50 parabolic elements and the ground plane 
is discretized into 250 4-node elements. When a positive potential 
with reference to the ground plane is applied on the beam, the beam 
deflects towards the ground plane because of the electrostatic force. As 
the potential difference increases, the tip of the beam approaches the 
ground plane, and touches the ground plane for a certain bias defined 
as the pull-in voltage. The pull-in voltage for the beam considered 
here is 17.24 volts. 

17.20 I 94 

TABLE I 
COMPARISON OF RELAXATION AND MULTI-LEVEL NEWTON 

ALGORITHMS FOR A BEAM OVER A GROUND PLANE EXAMPLE 

5 I 9713.83 1 2145.7 

The performance of the relaxation and multi-level Newton algo- 
rithms for the beam example is summarized in Table I. Observe that 
the multi-level Newton algorithm takes fewer iterations and is much 
faster compared to the relaxation algorithm for tightly coupled cases. 
Figure 1 compares the convergence of the relaxation and multi-level 
Newton algorithms for the beam and ground plane example. Note that 
closer to pull-in the relaxation algorithm converges slowly, but the 
multi-level Newton algorithm converges rapidly. The slow conver- 
gence of the relaxation algorithm, near pull-in, is due to the increased 
coupling between elastostatic and electrostatic systems. As the multi- 
level Newton algorithm accurately accounts for all the coupling it 
exhibits rapid convergence behavior. 

The resonant frequency as a function of the applied bias for the 
beam structure is shown in Figure 2. As the bias increases, the fre- 
quency decreases and when the bias reaches the pull-in voltage, the 
frequency goes to zero. Noting that the frequency is proportional to 
the effective stiffness of the structure, the frequency decreases as the 
effective stiffness decreases for increasing bias. 

The comb example consists of a deformable comb structure, a drive 
structure and a ground plane (see [2] for a description of the device). 
The comb is discretized into 172 parabolic elements, the drive is 
discretized into 144 linear bricks and the ground plane is discretized 
into 2688 4-node elements. When a positive potential is applied on the 
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Fig. 1. Convergence of relaxation and multi-level Newton algorithms 
for a beam and ground plane structure €or a bias of 17.23V 
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Fig. 2. Resonant frequency vs. bias for the beam structure 

drive structure, and zero potential on the comb and the ground plane, 
the comb structure deforms out of plane. 

A comparison of the relaxation and multi-level Newton algorithms 
for the comb example is summarized in Table II. At low voltages, the 
deflection of the comb is small, the coupling between the electrical and 
mechanical systems is weak and the relaxation algorithm works very 
well. At low voltages, the multi-level Newton algorithm takes fewer 
iterations compared to the relaxation algorithm but the simulation 
time for the multi-level Newton algorithm is a little longer. For higher 
voltages, the multi-level Newton algorithm converges much faster 
compared to the relaxation algorithm. For a bias of 80 volts, the multi- 
level Newton algorithm is about 7.7 times faster. For an application 
of 85 V on the drive, the relaxation algorithm fails to converge and the 
multi-level Newton algorithm converges very rapidly and takes only 3 
iterations. This is illustrated in Figure 3. 

The frequency for the comb-drive structure as a function of the 
applied bias is shown in Figure 4. As the applied bias on the drive 
increases, the frequency increases. The increase in the frequency can 
be explained by the effective increase in the stiffness of the structure. 

VI. CONCLUSION AND ACKNOWLEDGEMENTS 

In this paper, we presented a matrix-free based, multi-level Newton 
algorithm for 3-D electromechanical analysis. Similar to the relaxation 
algorithm, the multi-level Newton algorithm employs repeated black- 
box calls to elastostatic and electrostatic analysis. While the relaxation 
algorithm fails to converge for tight coupling between mechanical 
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TABLE I1 
COMPARISON OF RELAXATION AND MULTI-LEVEL NEWTON 

ALGORITHMS FOR A COMB DRIVE EXAMPLE (A * INDICATES THAT THE 
ALGORITHM FAILS TO CONVERGE FOR THE BIAS) 

Bias # Iterations I CPU(sec) 
Relaxation I MLNewton I Relaxation I MLNewton 

3595.4 5802.2 
9138.0 10195.1 

42160.3 12053.2 
80.0 142 81827.0 10660.4 
85.0 * * 10767.8 
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Fig. 3. Comparison of convergence of relaxation and multi-level 
Newton algorithms for a comb example at an applied bias of 85 V. 

and electrical domains, the multi-level Newton algorithm is shown 
to converge very rapidly. Numerical results indicate that the multi- 
level Newton technique is much faster compared to the relaxation 
technique. The multi-level Newton technique described in this paper 
can be extended for other coupled domains in MEMS, but the choice 
of the matrix-free parameter may need more investigation. 

The authors would like to thank Professor Stephen D. Senturia for 
m’any valuable discussions. 
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