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Abstract-In this paper we show that for the stan- 
dard piecewise-constant collocation schemes used in 
programs like FASTCAP, computing the change in 
electrostatic forces due to geometric perturbations 
is equivalent to resolving for the charge distribution 
given a potential generated by linearly varying dipole 
distributions. Second, we derive closed form analytic 
expressions for the potential due to the linearly vary- 
ing dipole distributions. Third, results are given from 
implementing the dipole approach in the precorrected- 
FFT code FFTCAP and combining it with the adjoint 
method so as to rapidly compute the sensitivity of ca- 
pacitances to parameter variations. 

I. INTRODUCTION 

Accelerated boundary-element methods based on Mul- 
tipole and precorrected-FFT algorithms are now com- 
monly used to compute accurate capacitances and elec- 
trostatic forces in complicated 3-D geometries [l], [2]. For 
applications such as propagating process sensitivities, fit- 
ting capacitance formulas for large scale extraction, or an- 
alyzing coupled effects in micro-electro-mechanical struc- 
tures [3], [4], it is also necessary to quickly determine the 
geometric sensitivities of the electrostatic forces or capac- 
itances. 

In this paper we combine three contributions. First, 
we show that for the standard piecewise-constant colloca- 
tion schemes used in programs like FASTCAP [l], com- 
puting the change in electrostatic forces due to geomet- 
ric perturbations is equivalent to resolving for the charge 
distribution given a potential generated by linearly vary- 
ing dipole distributions. Second, we have derived closed 
form analytic expressions for the potential due to the lin- 
early varying dipole distributions. Third, we implemented 
the dipole approach in the precorrected-FFT code FFT- 
CAP [2], and combined it with the adjoint method so as to 
rapidly compute the sensitivity of capacitances to param- 
eter variations. Some computation results are presented 
below. 

This research was supported by ARPA under ONR contract 
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contract SJ-558, and by grants from IBM and Digital Equipment 
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11. COMPUTING GEOMETRIC VARIATIONS 

To compute charge densities given conductor potentials, 
one can solve the integral equation @(z) = da’, 
for x on the union of conductor surfaces S .  If the 
conductor surfaces are discretized into N panels, and 
piecewise-constant collocation is used, the result is an 
N-dimensional system of the form P(u)q = Q(u),  where 
q E %2N is the vector of panel charges, U E %3M is the 
vector of three-dimensional panel vertex displacements, 
and P d 4  = & Spaneh(u) Il.’-.k(u)ll da‘. For a given U ,  

this dense system of equations can be “sparsified” and 
solved efficiently using precorrected-FFT accelerated it- 
erative methods [2]. 

for a given direction ii, one must 
solve P ( u ) % i  = w i i q ( u ) .  The term q G q ( u )  is 
the change in potential due to a change in charge position 
along direction i. This “delta” in potential can be gener- 
ated by a dipole distribution on the unperturbed panels, 
as motivated by Figure ltop. To derive a analytic ex- 
pression for this dipole potential, one can decompose the 
panel perturbations in to a set of three terms, one for 
each vertex motion, as shown in Figure lbottom. Then, 
modifications of the formulas in [5] can then used to an- 
alytically evaluate the potential due to the panel dipole 
distributions. The formulas are valided by comparing to 
finite-differences and letting the perturbation shrink to 
zero, as in Figures Stop, bottom. Finally, the grid projec- 
tion step in the precorrected-FFT algorithm can easily be 
modified to use these dipole potential formulas [2]. 
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111. COMPUTATIONAL RESULTS 

In coupled electromechanical analysis, all that is needed 
is a fast approach to computing a i q ( u )  for many 
different 6’s. The obvious approach is to approximate 
-iiq(u) 8U by finite differences as in ~ P ( u  + ~i)q - 
P(u)q, where E is small. For the example of the inter- 
connect structure below, computing a i ’ i q ( u )  au by the 
precorrected-FFT accelerated dipole approach requires 
0.153 seconds, where as using precorrected-FFT acceler- 
ated finite differences requires 4.38 seconds. Not only is 
the new method nearly thirty times faster, it is also more 
robust as the finite-difference result is very sensitive to 
the choice of E .  

In order to compute the sensitivity of Cg, the self- 
capacitance of conductor five in the interconnect struc- 
ture below, to the seventeen process variations, one first 
solves the adjoint system P ( u ) ~ ~  = @, where Qi = 1 for 
panels on conductor five. Then, KS = q T m @ q ( u ) .  au ap 
Using the precorrrected-FFT accelerated dipole approach, 
the sensitivity of Cs to all seventeen parameters can be 
computed in under thirty seconds. For example, 2 = 
-0.012 and E = 0.492. 
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Fig. 2. (Top, bottom) Finite-difference versus analytic formula for 
unit triangle, with evaluationpoints at I = 1/3, y = 1/3, z = 1 and 
z = 2, y = 5 ,  z = 100, respectively. X-axis is Perturbation size. 
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IV. CONCLUSIONS AND ACKNOWLEDGEMENTS 

In this paper we show that for the standard piecewise- 
constant collocation schemes used in programs like FAST- 
CAP, computing the change in electrostatic forces due 
to geometric perturbations is equivalent to resolving for 
the charge distribution given a potential generated by 
linearly varying dipole distributions. Second, we derive 
closed form analytic expressions for the potential due to 
the linearly varying dipole distributions. Third, results 
are given from implementing the dipole approach in the 
precorrected-FFT code FFTCAP. On a complicated in- 
terconnect structure, the geometric sensitivity based on 
the dipole approach was shown to be thirty times faster 
than finite differences. In addition, when combined with 
the adjoiont approach, the method can be used to quickly 
compute parametric sensitivities. 

The authors wish to thank Joel Phillips for making his 
precorrected-FFT code available for our modifications. 
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