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Abstract-We present a full-chip extraction 
methodology for evaluating self-capacitance of i n -  
terconnects in complex digital ICs. We propose that 
a Monte-Carlo-based field solver be used to evaluate 
critical net capacitances and to accurately character- 
ize a faster, less accurate empirical extractor. The 
fast extractor can then be used to find noncritical n e t  
capacitances. To facilitate a priori  partitioning o f  
nets into critical and noncritical categories, we have  
developed a procedure for estimating absolute com- 
putational error of any capacitance extractor. We 
also report that Monte Carlo extractors can e f f i -  
ciently evaluate coupling capacitance between IC 
nets.  In this case, statistical error cancellation o c -  
curs during a subsequent circuit simulation. 

I. INTRODUCTION 

Modem digital ICs can contain millions of interconnects. 
To a large extent, parasitic capacitance associated with these 
electrical nets influences propagation delay and capacitive 
cross talk. Accurate, physically based 3D solvers are gener- 
ally too slow for fullchip capacitance extraction; massively 
parallel implementations for such solvers may be necessary. 
On the other hand, fast extraction methodologies that employ 
empirical layout-parameter-fitting or library-lookup strategies, 
unfortunately, have limited accuracy, in part due to their 
small effective calculation window. 

We propose here a methodology for full-chip capacitance 
extraction that uses an accurate, physically based Monte Carlo 
capacitance extractor in conjunction with a fast, lower- 
accuracy empirical extractor (layout parameter, library, or pat- 
tem matching). Monte Carlo extractors consume relatively 
small amounts of memory, handle complex geometries 
efficiently, allow huge calculation windows, report absolute 
errors in capacitance, and are computationally robust.[l-31 
These properties make Monte 'Carlo extractors attractive for 
accurate capacitance extraction in a full-chip environment. 
We define our merhodology as follows: (1) Use the acclFdte 
extractor to characterize the error of the fast extractor over 
actual nets in the full-chip environment. (2) Use the fast ex- 
tractor for noncritical nets. (3) Use the accurate extractor for 
critical nets. 

In the following sections we describe our methodology for 
full-chip extraction based on Monte Carlo solution. We also 
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cover the basic theory underlying one Monte Carlo solver, 
QuickCapTM[4], and give a procedure for estimating RMS 
(root-mean-square) error for any capacitance extractor. Lastly, 
we briefly discuss issues relating to coupling capacitance 
between specific nets. 

11. METHODOLOGY FOR FULL-CHIP EXTRACTION 

To extract interconnect capacitance in complex ICs, Monte 
Carlo field solvers can be significantly more efficient than 
other physically based solvers. Even so, without resorting to 
parallel processing, it is doubtful that a Monte Carlo solver 
could extract all net capacitances within a modem digital chip. 

Our proposed methodology for this type of problem is to 
employ a faster, though less accurate, capacitance extractor for 
noncritical nets, typically most of the nets. For critical nets 
we employ an extractor based on Monte Carlo. Noncritical 
nets are those for which the accuracy of the fast extractor is, 
for practical purposes, sufficient. Naturally, the accuracy of 
the fast extractor must be quantified to allow a priori 
partitioning of nets into critical and noncritical categories. If 
this is not possible, the next best approach is to use the fast 
method to find capacitance on all nets and then use the accu- 
rate extractor to extract as many accurate capacitance values as 
time allows. 

Our full-chip methodology assumes that computational a- 
ror in extracted capacitance is known. Monte Carlo extractors 
can fumish with each capacitance value an absolute numerical 
error, in terms of a statistical standard deviation. However, 
we must generally estimate the absolute error of fast, lower- 
accuracy extractors. 

We propose that fast-extractor error be charactew by di- 
rect comparison with Monte Carlo results over a reasonable 
sample population of the nets in the actual full-chip envi- 
ronment. The simplest characterization is an estimate of an 
RMS emor over the sample of nets. RMS error is, in fact, an 
analog of Monte Carlo statistical error. Note, RMS emr 
may not generally be sufficient to describe large-error prob- 
abilities, even if the error distribution appears to be gaussian. 
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HI. PERFORMANCE OF MONTE CARLO 
EXTRACTORS 

Capacitance 
(+I %) 

0.01 19pF 

0.127pF 

0.906pF 

8.63pF 

TABLE 1 
CONVERGENCE TIME YS. NET SIZE 

Con vergence Number of 
Time Samples 

70s 132,000 

80s 127,000 

40s 233,000 

180s 252,000 

The computational performance of a Monte Carlo extractor 
can be markedly different from other types of physically based 
extractors. For example, Quickcap’s convergence time for 
evaluating selfapacitance of a net depends weakly both on 
the size of the net and on the number of surrounding nets. 

In addition, memory requirements are extremely low (no 
numerical meshing) and computational error depends only on 
run time. Below, we give a brief theoretical overview of our 
example Monte Carlo extractor Quickcap. We also present 
some data relating net size and convergence time for this ex- 
tmctor. 

A. Monte Carlo Integration and Random-Walks[l] 

To fmd the self-capacitance C of a particular net, QuickCap 
performs a Monte Carlo integration to evaluate the nested in- 
tegral below: 

where E is the component of electric field normal to the sur- 
face of integration; f and g are known functions, independent 
of geometry; and v is a known function, dependent on the net 
locations. The domain of the integral for C is a surface en- 
closing the net of interest. The domain of the integral for 
E@,) is a surface enclosing rl. The domain of the integral for 
v(rk) is the part of a surfam enclosing rk that not coincident 
with the surface of any net. 

BecauseEq. 1 contains no approximations, the principal 
source of computational error associated with Monte Carlo in- 
tegration is statistical error. 

The series of points associated with a single Monte Carlo 
estimate of the capacitance integral can be described as a float- 
ing random wall-floating because the size of a walk step is 
proportional to the distance b the nearest net. 

B. The Effect of Net Size on Convergence Time 

The number of Monte Carlo integration samples (or, 
equivalently, the number of random walks) required to find the 
total capacitance to within a given statistical error is a weak 
function of net size and density of surrounding nets. The 
number of samples depends, more so, on the environment 

around the net. The data in Table 1 illustrate the effect of net 
size on convergence time at 1% standarddeviation error. 
QuickCap was used here to extract self-capacitance values of 
sample nets in a 450-MB geometric IC data base. Capaci- 
tance and, presumably, net length and net complexity vary by 
a factor of 700; while, convergence time varies by a factor of 
4.5 and the number of samples varies by a factor of 2. 

IV. COMPUTATIONAL ACCURACY OF EXTRACTORS 

We have suggested in our proposed extraction methodology 
that error of a fast noncritical-net extractor can be characterized 
by comparison with an accurate, but slower, Monte Carlo ex- 
tractor. In this section, we first estimate capacitance erron 
associated with a variety of “generic” extractors. Then, we 
give results for an example fast layout-parameter extractor 
&PE). 

To estimate the error associated with various extractors, we 
represent each type of extractor as, essentially, ideal within an 
effective calculation window. Thus, error will depend on the 
environment outside the window. We use Quickcap to com- 
pute variations in net self-capacitance within the window as a 
function of nets outside. This approach fumishes worst-case 
error estimates. Longer nets will have a lower relative error 
because of cancellation effects resulting from geometric 
variations in the actual chip layout. 

A. Accuracy of Generic Extractors 

Fig. 1 shows a pair of 2D capacitance problems that are 
identical within a window, but have different environments 
outside. If an extractor does not include nets outside the win- 
dow, it can not differentiate between the two problems. Fig. 
1 illustrates the worst-case variation for a 5-level-metal proc- 
ess with 1pm layer thicknesses and a lpm minimum line 
width: the worst case consists of one small net or wire in 
top-level metal with no other objects inside the window. 
(Note, much greater capacitance variation would be observed, 
actually, if nets just outside the window were connected to the 
net within.) 
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C = 17.9 aF/pm 

Method 

Size of Window 
I 

W i n d o w  Rare R M S  
S i z e  Error Error 

C =  16.0 aF/pm 

Library 

Mesh 

Fig. 1: 2D examples depicting the influence of the external window environment on critical net self-capacitance. Metal thick- 
ness and vertical spacing are 1pm. The critical net is lpm by lpm, centered 9.5pm above the ground plane. The window is 
20pn wide. Nets outside the window, including ground, extend laterally to infinity. 

SCLm 90% 7%? 
1 Spm 20% 
15pm 20% S%? 
30um 4% l%?  

Fig. 2 is a plot of the relative capa(:itance variation be- 
tween the two cases of Fig. l as a function of window size. 
This can be used to estimate the error inherent in methods 
that can be characterized with a finite calciulation window. 

Table 2 lists estimates of the worst-c;se (rare) errors and 
RMS errors of various generic extractors due to finite window 
size. After estimating effective window sizes for each extrac- 
tor, we use data from Fig. 2 to estimate the RMS errors. 
Here are some of our considerations in estimating window 
sizes for various extractors: 

Simple LPE. Extraction takes into account nets above 

Complex LPE. Extraction takes into account, as well, 
and below the net of interest. 

lateral nets within a few microns. 

1 10 100 
Window Size (pm) 

Fig. 2: Relative variation in capacitancce between the two 
,geometries depicted in Fig. 1 as a function of window size. 

Library or Pattern Matching. Extraction uses pre-cal- 
culated structures that match or nearly match the local 
geometry. 

Extraction is by solution of the underlying 
Laplace equation. The numbers given apply to win- 
dow-induced error, only. Discretization emr  is as- 
sumed to be negligible. 

Mesh. 

The window sizes we list for these methods are rough es- 
timates. Rare-error values are taken directly from the Fig. 2. 
Because of statistical error cancellation in large nets, we ate 
assuming that rare error represents 3-6 standard deviations. 
Methods that use smaller windows involve more statistical 
cancellation over the length of the net and thus will have less 
probability of a memx event. We believe that present 
mesh methods can not easily, if at all, perform high-accuracy 
extraction for large nets because of the large window sizes E- 

TABLE 2 
ESTIMATES OF CALCULATION ERRORS FOR 

SOME GENERIC EXTRACTORS 
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B. A Simple LPE Example li2 li2 li2 

We now characterize the error of a simple LPE extractor. In 
this extractor, net self-capacitance is t - i  by a weighted 
sum of the areas for each interconnect layer and via layer. 

We would like to estimate the normalized RMS error ox of 
the LPE extractor, where the normalized RMS error of n ex- 
tracted capacitance values is 

C,, is the extracted capacitance value of the ith net and C, is 
its exact capacitance. 

Our methodology uses Monte Carlo results, rather than ex- 
act capacitance values, to find an uncorrected normalized RMS 
error 0,. This error includes intrinsic Monte Carlo statisti- 
cal error. 

(3) 

where CM,i is the ith capacitance value found by the Monte 
Carlo method. The normalized RMS m r  may be approxi- 
mately found from the Monte Carlo statistical e m  a,. For 
reasonably accurate Monte Carlo data: 

(4) 

We have used QuickCup with this a,pproach to evaluate the 
RMS error of a simple LPE extractor on a small layout. The 
LPE capacitance is a weighted sum of the areas of 7 intercon- 
nect and via layers. We fxst determined the best fit of the 7 
coefficients using Quickcup results. Over 153 nets this fit 
gave an RMS error of 18%. Out of these 153 nets, the worst 
error was 54%. These values are consistent with the simple- 
LPE error values listed in Table 2. 

ox -&&-OM 2 a 

V. COUPLING CAPACITANCE 

While the major thrust of our pre,sentation concems self- 
capacitance extraction, the issue of coupling capacitance be- 
tween nets deserves some discussion. We previously noted 
that self-capacitance convergence time for Monte Carlo extrac- 
tors is weakly dependent on net size. This does not apply to 
the convergence time for the coupling capacitance between 
two specific nets. On a large net with, say, thousands of 
neighboring nets, the individual capacitance values to all of 
the nets can not be found to high accuracy in reasonable time. 

lpf- lpf- lpf- lpf- 
(It1 O%jTirL: 1 O%T(+ 1 O%T(* l O % T  

Fig. 3: Statistical cancellation during circuit analysis. ’Ibe 
Elmore delay rime for this circuit is lops (rt5.5%). 

Often in large digital IC designs, no particular small cou- 
pling capacitance value significantly affects the analysis of a 
net. (“Small,” here, means small relative to the self- 
capacitance of the net in question.) Those coupling-ca- 
pacitance values that are of importance individually are also 
generally large enough that the Monte Carlo convergence 
time required for reasonable statistical accuracy is accept- 
able-that is, on the order of the time required to find the to- 
tal net capacitance. 

Nonetheless, small capacitances associated with a net can 
be collectively important. Monte Carlo extractors demon- 
strate a great efficiency in this situation: the weighted sum of 
many small capacitances will have reduced error due to statis- 
tical cancellation. Consequently, relatively large errors in 
coupling capacitances are reduced in subsequent circuit analy- 
sis. By way of example, Fig. 3 shows a simple RC circuit 
where each capacitance element has a statistical uncertainty of 
+lo%. The Elmore delay time for this circuit has a statistical 
error of f5.5%, lower by almost a factor of 2 due to sta- 
tistical error cancellation. 

VI. SUMMARY 

We have proposed a methodology for full-chip capacitance 
extraction. It relies on a physically based Monte Carlo ex- 
tractor for high-accuracy extraction of critical net capacitance 
in conjunction with a faster, but less accurate, empirical ex- 
tractor for noncritical nets. Our methodology requires, as 
well, that the Monte Carlo extractor be used to quantify abso- 
lute capacitance errors in the fast-extractor. 
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