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AbstTact- In this paper a two-dimensional SchrBdi- 
nger simulator devised for the analysis of steady state 
coherent transport in electron devices is presented. 
The simulator provides the solution of the time-inde- 
pendent Schrodinger equation inside a generic two- 
dimensional system with closed- or open-boundary 
conditions. The solution is determined in presence 
of a generic potential energy profile and, optionally, 
of a constant magnetic field in the perpendicular di- 
rection. The program has been applied to the solution 
of simple two-dimensional problems, chosen as repre- 
sentative sketches of physical situations of practical 
interest. 

side a generic 2D system with closed- (CBC) or open- 
boundary (OBC) conditions, in presence of a generic po- 
tential energy profile ( E ( 3 )  and, optionally, of a constant 
perpendicular magnetic field ( B I ) .  

11. THE SIMULATOR 

The simulator computes for the solution inside a 2D 
system which, in our notation, is a generic 2D space re- 
gion (see Fig. 1) everywhere isolated from the outside by 
Dirichlet (i.e. P = 0) CBCs but at the optional inter- 
faces between the system and its leads. These are quan- 

I. INTRODUCTION 

Thanks to the constant progress of modern solid-state 
technologies, the continuous scaling of device dimensions 
has produced nowadays state-of-the-art MOS transistors, 
featuring channel lengths in the deep submicron range. 
In this length range, devices show substantial quantum 
effects, such as carrier confinement [l] and localized im- 
purities [2]. As a consequence, the quantum mechanical 
treatment of the electron transport will be soon of prac- 
tical interest. In addition, its relevance will certainly in- 
crease, especially in view of new device design concepts 
based on quantum wells, single electron, and tunneling 
effects [3], [4]. 

Due to recent improvements, the fully-quantum one- 
dimensional (1D) analysis of carrier transport is al- 
most within everyone's grasp [5 ] ,  but it still remains a 
formidable task, owing both to the complexity of the 
physics and to the heavy computational burden involved. 
Simpler or partial alternatives to quantum transport have 
been investigated, and so far 1D approaches [6]-[8] or two- 
dimensional (2D) corrections [9] to somehow include the 
effects of quantum phenomena inside a device simulator 
have been proposed. 

In this paper a 2D Schrodinger simulator devised for 
the analysis of steady-state, coherent transport in elec- 
tron devices is presented. The simulator provides the so- 
lution of the time-independent Schrodinger equation in- 
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Fig. 1. A sketch of the generic 2D system. The system leads are 
optional. In their absence the system is closed. 

tum wells of constant sections through which the system 
exchanges charge with the reservoirs. The leads are con- 
nected to the system by OBCs which are the superposition 
of progressive and regressive plane waves and evanescent 
modes (we follow [lo], [ll] for the OBCs form and for the 
notation) : 

n r j  

00 

m=Nj+l  

where: j is the index of the lead; qj and are the 
longitudinal-outgoing and counter-clockwise transverse 
coordinate of lead j, respectively; m is the index of the 
transverse modes inside the leads; N j  is the number of 
traveling modes inside lead j ;  kh is the wave vector of 
the mth mode inside lead j ;  ab and Vi are the strengths 
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of the incoming and reflected mth mode in lead j, respec- 
tively; finally, 

is the mth transverse mode of the wave function inside 
lead j of width dj. 

For sake of flexibility, the program reads a triangular 
mesh describing the generic 2D domain to  be simulated, 
together with its 2D E ( 6  [12]. The 2D envelope-function 
equation (i.e. the time-independent Schrodinger equation 
in the effective mass approximation) is then discretized 
in the finite elements framework, leading to the following 
linear system of equations ( B l  = 0 in this case) [lo], [ l l] :  

where: i = l...N are the mesh nodes; m* is the carrier 
effective mass; !P$" is the unknown eigenfunction value 
relative to  the m-th eigenvalue at node j; R is the 2D 
domain of integration; r are the system boundaries; ( p k ( 6  
are the so called shape (or basis) functions which impose 
the functional nature of the solution. Since we chose to 
linearly approximate the Q(m)  in each triangular element, 
( p k ( 3  is the plane being unity a t  node k and zero at the 
other two nodes of the element. 

If BI # 0 the system (3) becomes more complex be- 
cause the OBCs are not known a priori and must be pre- 
viously determined solving a non-linear , non-symmetric 
generalized eigenvalue problem. 

The symmetric generalized eigenvalue problem (3) is 
assembled in sparse form and then solved. The solution 
is found by means of the inverse iteration and Rayleigh 
quotient algorithms, where the minimum of the poten- 
tial energy is used as a guess of the lowest energy eigen- 
value. Successive eigenfunctions and eigenvalues are ob- 
tained starting from an eigenfunction guess orthonormal 
(through Gram-Schmidt procedure) to  all previous ones, 
and using the last eigenvalue as a guess for the successive. 
The determination of each eigenstate requires the inver- 
sion of symmetric, positive-definite matrices. This task 
is carried out using a Preconditioned Conjugate Gradient 
(PCG) algorithm. In addition, B l  # 0 requires the use 
of a bilinear-PCG algorithm for the determination of the 
OBCs. 

111. SIMULATION RESULTS 

The program has been applied to the simulation of 2D 
test systems. Despite to its simple nature, each example 
should be viewed as the attempt to investigate quantum 
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effects present inside real mesoscopic devices. Since the 
final goal will be the coherent simulation of a submicron 
MOS transistor, the reader is allowed to  catch the flavor 
of it in each of the shown examples. 

The feature length of modern MOSFET devices is be- 
coming so short that the assumption of a uniform back- 
ground doping of the channel region is no longer realistic 
[2], [13]. In a quantum simulation the role of localized 
Coulomb impurity can be included directly inside the po- 
tential term E ( 6 .  Fig. 2 shows \!PI2 inside a rectangular 
OBC resonant cavity with (right) and without (left) the 
presence of an unscreened Coulomb impurity in its central 
position. The stopping effect on the eigenfunction prop- 
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Fig. 2. \ * I 2  inside a OBC rectangular cavity with (right) and 
without (left) a repulsive Coulomb potential in its central position. 
OBCs at the extreme x sections and for l O O A  5 y 5 200A; CBCs 
elsewhere. The Coulomb impurity reduces propagation along x. 

agation from 2 = OA to x = 1 O O A  due to  the repulsive 
impurity is clearly seen, and some tunneling of the wave 
function can be observed. 

The role of the roughness of the Si - Si02 interface 
on the degradation of carrier mobility has been widely in- 
vestigated [6], [14], [15]. Again, this is a typical feature 
that can be directly included inside the quantum sim- 
ulation of carrier transport. Fig. 3 shows the localiza- 
tion of the eigenfunctions inside quantum wells of differ- 
ent lengths featuring a Gaussian roughness on one of the 
interfaces, schematically representing the Si - Si02 inter- 
face of a quantized MOS channel. As the channel length 
is increased, the localization effect increases. Therefore, 
the channel conductance O ( E )  is progressively reduced, as 
shown in Fig. 4 where g ( ~ )  for two of the rough channels 
of Fig. 3 (broken lines) are reported, together with the 
conductance of a channel with ideal Si - Si02 interface. 
Here, n ( ~ )  has been obtained summing up the conduc- 
tances of all transverse modes present at energy E .  As can 
be seen, the detrimental effect of surface roughness in- 
creases with increasing channel length, driving n ( ~ )  away 
from the stepwise behavior typical of quantized channels 
featuring ideal interfaces. 

inside a quantum well of increasing 
width, as can be schematically regarded the channel of 

Fig. 5 shows 
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Fig. 4 Conductance of two of the rough channels Fig 3: dashed line: 
5008, channel; dotted line: 2000,i channel; solid line. conductance 
of an ideal channel of the same width 
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Fig. 3. Re[G"] inside few schematic OBC MOS rough channels of 
different lengths. Gray shade: E(T) = 3.15V (i.e. SiOz); E(F) = 
OV elsewhere. OBCs at the extreme x sections; CBCs elsewhere. 
Localization increases (thus conductance decreases) with increasing 
channel length. 

a MOS transistor, whose transverse section widens mov- 
ing from source to drain under the effect of the applied 
VDS (although, for simplicity, we assumed no potential 
drop along the channel). Since each solution represents 
an eigenstate relative to  a specific value of the total en- 
ergy e, the last divides in some way (the problem is not 
separable) between its longitudinal and transverse com- 
ponents. However, wider sections of the channel imply 
lower transverse energy. Thus, a momentum (or energy) 
transfer from the transverse to the longitudinal direction 
is expected as long as the channel width increases. This 
effect can bee seen from the waterfall-like shape of the 
solution. 

The solver can also be applied to physical situations 
closer to what is the common understanding of the term 
mesoscopic. Fig. 6 shows the [$I2 inside an OBC quantum 
well in presence of a biconcave E(F) (solid line; see Fig- 
ure Caption) [16], [17]. The focusing effect of the electron 
beam is clearly seen. Looking at  the arrows, representing 
the carrier quantum current, it is clear how the focusing 
effects does not simply originate from carriers tunneling 
through the barrier at the thinnest sections, but from the 
converging effect on the electron wave of the shaped po- 
tential, even at barrier points where sections are larger 
(see explanations in [16], [17]). 

Finally, as a simple example of a solution including the 
presence of a non-zero perpendicular magnetic field, Fig. 7 
shows the coherent transport through a quantized chan- 
nel in presence of B l  = 25T. As can be seen, the wave 
function, entering from the left OBC, proceeds towards 
the right OBC displaced towards the upper edge due to 
the presence of the constant B l .  
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Fig. 5. I Q [ 2  inside a OBC quantum well of linearly increasing sec- 
tion. Gray shade: E(F) = 3V; E(F) = OV elsewhere. Arrows: quan- 
tum current flux. OBCs at the extreme x sections; CBCs elsewhere. 
The energy transfer between the transverse and the longitudinal 
direction is seen. 

IV. CONCLUSIONS 

A 2D Schrodinger simulator devised for the analysis 
of steady-state, coherent transport in electron devices 
has been developed. The simulator, providing the so- 
lution of the time-independent Schrodinger equation in- 
side a generic 2D systems, can be usefully employed for 
the analysis of quantum coherent transport in mesoscopic 
devices. Results of simple but potentially relevant ap- 
plications have been shown, encouraging the use of such 
approach to  the analysis, only coherent for the moment, 
of submicron devices. 
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Fig. 6. 1 @ 1 2  of an OBC focusing electronic lens. Solid line: edge 
contour of a biconcave shaped potential (E(?) = 0.25V therein) re- 
alizing the electrostatic lens. Arrows: quantum current Aux. OBCs 
at the extreme x sections; CBCs elsewhere. 
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