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I. INTRODUCTION 

In the numerical simulation of ultra-small MOSFETs 
with oxide thicknesses in the range (2 ... 4)nm gate leak- 
age currents have to be modeled on a sound physical base. 
The main mechanisms apart from oxide non-idealities 
are direct and resonant tunneling (turning into Fowler- 
Nordheim tunneling at large biases). The self-consistent 
simulation of direct tunneling using a fully analytical 
model was presented in Ref. [l] assuming plane waves both 
in the gate electrode and the silicon substrate. Here we 
study the impact of the confinement of carriers in the in- 
version channel (quasi 2D states) on the size of the direct 
tunnel current. This will be done based on a Poisson- 
Schrodinger solver integrated with the device simulator 
DESSIS-IS~, and by applying Bardeen’s perturbational 
method [2]. 

Fig. 1. Direct tunneling out of confined states in the inversion chan- 
nel (left) and resonant tunneling via oxide trap levels (right). 

As experimentally evidenced, direct tunneling cannot 
account for the strong gate leakage when the oxide thick- 
ness becomes larger than 3 nm. A straightforward expla- 
nation for these currents is in terms of resonant tunneling 
via quasi OD states induced by oxide traps (see Fig. 1) 
which starts to dominate over direct tunneling as soon as 
the tunnel length exceeds 3nm. An analytical model of 
zero-phonon resonant tunneling via oxide traps [3] wils im- 
plemented into DESSIS-ISE, and simulations for various 
configurations of resonance levels were performed. 

11. DIRECT TUNNELING 

To obtain the tunnel current through the gate oxide, 
we compute the eigenfunctions T+!$’ and eigenvalues Er of 

the 1D Schrodinger equation 

for electrons localized perpendicular to the interface in a 
MOSFET channel. Here, i labels the different eigenvalues, 
Y labels the conduction band valleys of silicon, and m,”(z) 
is the effective mass component in quantization direction 
z. AS little is known about the dispersion relation in the 
Si02 gap, using (1) with some value m;(z) = mzz in the 
oxide must be considered as a fit. 

The Schrodinger equation is solved within a “quantum 
box” that extends from the gateloxide interface to some 
point sufficiently deep in the silicon bulk (e. g. in 50nm 
distance from the Si-Si02 interface). At the end points of 
the quantum box we assume boundary conditions of the 
form l+r‘/+rl = lkz(Er)l. Here, k,(Er) is the local wave 
number computed from the energy, the effective mass, and 
the potential at the boundaries. For end points at which 
the wave function attenuates, these boundary conditions 
correspond to an infinitely extending constant potential 
outside the box. The boundary conditions are arbitrary 
at end points where the wave function oscillates, however, 
they produce less artefacts in the total electron density 
than e. g. zero boundary conditions. 

Eq. (1) is solved by guessing an eigenvalue Er and in- 
serting it into the Schrodinger equation. The resulting 
ordinary differential equation is solved for the left and the 
right part of the quantum box using the CPM(1) method 
[4]. If the partial solutions can be matched at a properly 
chosen intermediate point, the guessed value was really an 
eigenvalue; otherwise, the mismatch allows to compute a 
better estimate [5]. 

The decay rates into unbound states in the gate can be 
determined by perturbation theory. The perturbation is 
given by the difference of the real potential - which allows 
free motion on the gate side of the oxide - and the poten- 
tial assumed to compute the localized eigenstates. The 
calculation then goes straightforward as demonstrated by 
Bardeen [2]. By integrating over degrees of freedom per- 
pendicular to the quantization direction and summing 
over all eigenstates, one obtains for the direct tunnel cur- 

0-7803-3775-1 /97/$10.00 0 1997 IEEE. I01 



rent from/into quasi 2D states in the MOS channel 

with E = E; + (1 - m&/m,)E. Af is the difference 
of the Fermi functions in the channel and the gate. L is 
the thickness of the gate, which is assumed large enough 
to neglect quantization. L cancels with the normaliza- 
tion constant of the wave functions $fi in the gate. EC,, 
labels the conduction band edge in the gate. z is the 
direction perpendicular to the Si-Si02 interface and zo 
is the location of the gate-Si02 interface. moz and m, 
are effective masses in the oxide and the gate; m, and 
miy = m t J m  are the silicon effective masses in z- 
and zy-direction, respectively. ml and mt are the longi- 
tudinal and transverse mass components of the electrons 
in silicon. E; and +; are determined by the numerical 
solution of the 1D Schrodinger equation. In order to cal- 
culate the correct tunnel current from (1) and (2), a suffi- 
cient number of eigensolutions has to be considered. For 
strong negative gate biases this number can be quite large 
(up to about 300 for the curves presented in Fig. 2 ) ,  be- 
cause most of the electrons injected from the gate have a 
high energy. 
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Fig. 2. Simulated direct tunnel currents for various MOS capacitors 
(p-Si, (loo), mor = 0 . 4 2 ~ ~ 0 ) .  

Fig. 2 shows IV-characteristics of MOS capacitors with 
different oxide thicknesses obtained with the analytical 
transmission coefficient of Ref. [l] and the full quantum- 
mechanical treatment, respectively. Note that the two 
sets of curves result from completely independent imple- 
mentations, but using equal effective masses. The close 
agreement for negative biases < -lV is not surprising 
because of the absence of confinement. 

But even in strong inversion (p-Si, N A  = 101scm-3) 
the effect of quantization is rather small. In the case of 
ultra-thin oxides the reverse current is limited by ther- 
mal generation of electrons in the Si depletion region, 
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Fig. 3. Shockley-Read-Hall rates and electron densities for the 42 8, 
device at VQ = 1.5V. 

i.e. the current is proportional to ni/7 (T - minority 
carrier lifetime). In the region of quantum confinement 
the intrinsic density ni is roughly reduced by a factor 
An = exp[-(E1- E,)/ lc~Tl ,  where E1 is the energy level 
of the bottom of the lowest subband. However, since not 
only the total charge, but also its distribution is changed, 
ni in the region of maximum Shockley-Read-Hall genera- 
tion is larger than in the classical case, and therefore, the 
full quantum-mechanical treatment yields a slightly larger 
current as compared to the analytical case. Adjusting the 
lifetime can easily absorb this difference. 

For the 4 2 w  oxide, the tunnel resistance of the bar- 
rier dominates the current, which is reduced now as re- 
sult of the confinement by about one order of magni- 
tude at the most. This is caused by the interplay of 
two opposite effects: the increase of the tunnel proba- 
bility due to the split-off of the lowest subband at the 
Si-Si02 interface by about E1 - E, = hOz(97r/8)2/3 with 
AO, = ( 4 2 ~ 2 h 2 / 2 m , ) 1 / 3  (exact for triangular potential), 
and a corresponding decrease of the occupation proba- 
bility by about a factor An. The knee is caused by the 
onset of strong inversion. Here both curves approach as 
the Fermi level approaches El. In the bias range where 
the difference is most pronounced, resonant tunneling will 
outnumber direct tunneling. Hence, we conclude that the 
influence of the quasi 2D states on direct tunneling is neg- 
ligible in all cases. 

111. RESONANT TUNNELING 

The resonant tunnel current via a single trap level is 
evaluated by [3] 

(3) 
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where Et (z )  = E,,, + ag - qFz - at is the oxide trap level. 
The WKB transmission coefficients X,,(z) of the partial 
barriers (separated by the trap at position zo) are given 
bY 

(4) 

with z+ zO(z). kg,si are the momenta and Eg,sj the 
kinetic energies in gate and silicon for the tunneling elec- 
trons, respectively. +g,si are barrier heights measured 
from the corresponding con- 
duction band edges and @t is 
the energy of the resonance 
level measured from the oxide 
conduction band edge. A ho- 
mogeneous trap density Nt in 
z-direction has been assumed 
parameterized by the length 
Lt = (nNtr:)-'. rt is the lo- 
calization radius of the trap. Lt 
can be interpreted as the thick- 
ness where the total cross sec- 
tion of all traps would equal the oxide area. Finally, EF,g 
and EF,s( denote the Fermi levels in gate and silicon, re- 
spectively. 

Fig. 5 shows the total resonant tunneling current for 
three discrete oxide trap levels, which yield three local 
maxima in each branch. These maxima occur at volt- 
ages where Et(z*) = E,,, (a = g for V < 0, a = Si 
for V > 0) with z* given by the condition of maximum 
resonant tunnel current: x ( z * )  = x(z*). The oscillatory 
behavior (known from the resonant tunnel diode) is less 
distinct for aluminium gates than for poly gates because 
of the large Fermi energy in the metal. In Fig. 6 a contin- 
uous ladder of trap levels was assumed (10 meV spacing). 
A reasonable fit to experimental data of Ref. [6] can be 
achieved using Lt = 3 m  which corresponds to a total of 
10 defects per resonance level in the whole oxide (volume 
= 6.3 x lo-'' cm3). 

Si 

Fig. 4. Symbols used in 
equations (3) and (4) 

IV. SUMMARY 

The direct tunnel current through gate oxides has been 
modeled by an analytical model and by the numerical 
solution of the Poisson-Schrodinger quantum-mechanical 
problem. Despite the well-know reduction of the chan- 
nel charge density due to the quantization in the latter 
model, the tunnel currents differ only insignificantly be- 
tween the two models. This has been attributed to the 
compensating effects of decreased occupation probability 
and increased transmission coefficient for higher energy 
states. 
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Fig. 5. Simulated resonant tunnel currents for an MOS capacitor as- 
suming three oxide trap levels with 9t = 1.9 eV, 2.4 eV, and 2.9 eV, 
relative weights 1, 10, and 1, and Lt = lOcm for weight 1 (oxide 
thickness 4.2nm, p-Si, (loo), moe = 0.42mo). 
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Fig. 6. Simulated resonant (solid) and direct (dashed) tunnel cur- 
rents for an MOS capacitor with an oxide thickness of 4.2 nm assum- 
ing equidistant trap levels separated by 0.01 eV and equal weight 
Lt = 3m. 

Resonant tunneling can explain the measured gate leak- 
age currents for oxide thicknesses larger than 3nm and 
low biases. Assuming a dense distribution of resonance 
levels induced by oxide defects, the reasonable value of 
1.6 x 1011 cm-3 for the spatial defect density turned out 
to yield good agreement between simulated and measured 
tunnel currents. 
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