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Abstract--The density-gradient approach to quantum 
transport theory is used to model the C-V characteristics of 
MOS devices with ultra-thin gate oxides. The method is 
shown to provide a physics-based approach the works well in 
all bias regimes and is simple enough for engineering applica- 
tions. 

I. INTRODUCTION 

The current generation of metal-oxide-semiconductor 
(MOS) devices have oxide thicknesses of roughly SOA and it 
is expected that, with further device scaling deeper into the 
submicron regime, oxides in the thickness range of 20-50A 
will become of great technological importance [ 11. To under- 
stand the characteristics of these devices it becomes increas- 
ingly important to take effects of quantum mechanics into 
account. The most obvious quantum mechanical effect, seen 
in the very thinnest oxides, is gate leakage via direct tunnel- 
ing through the oxide. The exponential turn-on of this effect 
sets the minimum practical oxide thickness (-2OA). Above 
this thickness, tunneling is insignificant but a second effect, 
the quantum mechanical repulsion of electronsholes from the 
vicinity of the Si-SiO, interface, can still be quite important. 
In particular, this repulsion will impact the electrical charac- 
teristics when the distance over which it is felt (typically 
-5A) is a non-negligible fraction of the oxide thickness. The 
purpose of the present work is to model this exclusion effect 
using an approximate quantum treatment known as density- 
gradient theory [2]. We focus on interpreting C-V data since 
this is an essential tool for characterizing critical device pa- 
rameters such as threshold voltage, gate capacitance and dop 
ing profiles [3]. 

Efforts to understand the effects of quantum mechanical 
repulsion and confinement in inversion layers date back to the 
pioneering work of Stern and co-workers [4]. More recently, 
with the recognition that such effects become important tech- 
nologically as oxide thickesses are reduced, a number of addi- 
tional theoretical studies have been undertaken including 

“exact” Poisson-Schrodinger calculations [SI and various clas- 
sical simulations with ad hoc quantum corrections [6,7]. In 
principle, the Poisson-Schrodinger approach is the best since 
it fully includes the quantum mechanics (in a one-electron 
framework). However, it is not well-suited to engineering 
application and it is not easily generalized (e.g., to greater 
than one-dimension or to non-equilibrium situations) though 
a number of efforts attempting to do so have appeared [SI. In 
contrast, the phenomenological approaches are typically 
within a continuum framework, e.g., diffusion-drift, and are 
therefore easy to apply. Unfortunately, they suffer from not 
having a solid physical foundation and hence are able to 
match measured data only in limited regimes and then only by 
curve-fitting. They do not have much predictive or extrapola- 
tive value and their parameters do not have well-defined 
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Fig. 1. Comparison of the experimental C-V curve 
(diamonds) with the best fit using the method of van Dort [6] 
(solid line). The poly doping is taken to be 4 x 10’9cm’3. 

physical meanings. As an example, in Fig. 1 we plot the 
best fit of the model of van Dort [6] together with some ex- 
perimental data for an MOS capacitor with a 3 1A gate oxide. 
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This model, which merely corrects the band edge with a fit- 
ting parameter, does capture the basic characteristic but it is 
obviously reasonable only in a restricted range. A similar 
comparison for the model due to Hansch [7] is shown in Fig. 
2. The Hansch model’s derivation [7] suggests a more solid 
physical basis than the van Dort model, however, as shown 
in the Figure when the electron wavelength in the model is 
given its correct thermal value (12A), the simulation results 
are rather poor. Only by using an unphysically large electron 
wavelength (40A) do reasonable fits to data become possible 
(see Fig. 2). But note that even in this case, the fit has the 
wrong slope in strong accumulation (large negative voltage 
for this p-type sample), a regime where quantum effects 
dominate, errors in the doping profiles play no role and one 
would expect the model to do best. Another problem is an 
unphysical change in slope observed at flatband. And of 
course, like the van Dort model, the Hansch model (with the 
electron wavelength used as a curve-fitting parameter) pro- 
vides little understanding of the sources of these various dis- 
crepancies. As an alternative continuum approach, in this 
paper we explore the use of density-gradient theory for per- 
forming such simulations. This theory is physically well- 
founded yet is simple enough to be useful in engineering- 
oriented applications. As we show, it can allow the C-V 
behavior in all regions of operation to be modeled and under- 
stood. 

11. DENSITY-GRADIENT THEORY 

Density-gradient theory is an approximate quantum 
transport theory which can be derived using methods of con- 
tinuum field theory or directly from quantum mechanics [2]. 
In macroscopic terms it captures the non-locality of quantum 
mechanics to lowest-order by assuming the electron gas is 
energetically sensitive to both the density and the gradient of 
density. This assumption gives rise to equations of state for 
the electrons and holes as sums of classical density-dependent 
terms plus quantum terms that are density-gradient-dependent. 
Written in chemical potential form the equation of state for 
the electron gas at lowest order can be shown to be [2] 

where n is the electron density and 6~ is the classical 
(diffusion-drift) chemical potential which we assume to take a 
Fermi-Dirac form [9]. The quantity b is the (linear) density- 
gradient coefficient which gauges the strength of the gradient 
effect in the gas. The choice of the value for this coefficient 
is crucial and in this work we take it to have the theoretical 
“high” temperature value of b = A2/(12m*q) [lo] where m* is 
an effective mass whose value is discussed below. Inserting 
this into the equation of momentum balance (assuming iner- 
tia negligible [ 1 11) gives 

-+ 

J, = npnVq - D,Vn + 2nbp, 

where 

and all other quantities have their usual meanings. When the 
gradient of n is small the third term of the current equation is 
negligible and the electron gas behavior is governed by the 
standard diffusion-drift current equation. However, when steep 
gradients are encountered (as in accumulatiodinversion layers) 
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Fig. 2. Comparison of the experimental C-V curve 
(diamonds) with that computed using the method of Hansch 
[7] assuming the correct electron wavelength (solid line) and 
using it as a curve-fitting parameter (dashed line). 

the third term becomes non-negligible and “quantum” behav- 
ior is manifested, e.g., (2.2) will describe tunneling phenom- 
ena [ 111. The theory is completed with the addition of simi- 
lar equation for holes, charge balance equations for electrons 
and holes, the Poisson equation of electrostatics and a set of 
consistent boundary conditions. The complete theory has 
been applied to a variety of situations in both semiconductors 
[2,11-131 and metals [lo] and appears to be quite useful. 

The application of these equations to the MOS inversion 
layer was in fact their original application [2] and all of the 
analysis and discussion of the earlier work is relevant here. 
The primary new aspect of the present work is the testing 
against experimental data. Also new here is the application 
to all bias regimes (which requires consideration of both car- 
rier types) and the treatment of a non-ideal gate. To analyze 
the MOS situation we set up and solve a one-dimensional 
boundary value problem which includes the equilibrium (zero 
current) form of (2.2), an analogous equation for holes, an 
electrostatic equation which includes incomplete ionization of 
impurities and a non-ideal polysilicon gate. The doping pro- 
files in the Si substrate have been measured with SIMS [3] 
and that in the polysilicon gate is assumed constant with its 
value being obtained by fitting the C-V curve in strong inver- 
sion. To solve these equations requires numerical methods 
and, for this purpose, we have found a Newton iteration to be 
quite robust and efficient. (Our earlier work employed a 
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shooting method iteration which was efficient but occasion- 
ally unstable). A small-signal ac analysis, solved in one pass 
of the linear system solver, is used to find the differential 
capacitance. 

111. RESULTS 

As computed using density-gradient theory, the effects of 
quantum mechanics on the carrier profiles in a poly-gate ca- 
pacitor biased in inversion are shown in Fig. 3. The main 
consequence is the exclusion of carriers from the oxide which 
causes their densities to fall to zero at the oxide interfaces. 
Note that the near-interface drop in the electron density in the 
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Fig. 3. Electron concentration and potential profiles in inver- 
sion (V=l.5) as computed using density-gradient theory. 

relatively low doped n-type poly-gate is largely the result of 
classical depletion (though right at the poly-oxide interface 
quantum exclusion does occur). Qualitatively, these are the 
expected results. We attempt no quantitative comparison of 
these profiles with Poisson-Schrodinger predictions because a 
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Fig. 4. Comparison of experimental (diamonds) C-V data 
with theoretical curves with (solid line) and without quantum 
effects (dashed line). The only fitting parameter in these cal- 
culations is the doping level in the poly gate. 

number of such comparisons (for much simpler situations) 
have already been carried out [2]. In general, these previous 
studies demonstrate density-gradient theory to be quite accu- 
rate even at rather small spatial scales; its only qualitative 
failure is an inability to describe interference phenomena 
which, for example, give rise to Friedel oscillations in the 
density when the well is very shallow. 

The effect of the quantum mechanical profiles on the C-V 
characteristics are studied next. In Fig. 4, we plot C-V curves 
computed classically (diffusion-drift) and using density- 
gradient theory and compare them with experimental data for 
the same sample as in Figs. 1 and 2. For both calculations 
there are no fitting parameters apart form the assumed- 
uniform poly doping (2.4 x 10'9cm"3). The evident failure of 
the classical calculation shows the importance of the quantum 
effects. As seen from the Figure, including these effects in 
the density-gradient approximation greatly improves the 
agreement especially in accumulation. For this calculation 
the effective masses normal to the surface (used as m* in 
(2.2)) have been assumed to take their largest values 
(longitudinal electron mass and heavy hole) to reflect the fact 
that the heavy carriers approach the interface most closely and 
therefore dominate the capacitance. In inversion the agree 
ment is less good; this is not believed to be caused by errors 
in the treatment of the quantum effects but rather is probably 
due to uncertainties in the poly doping profile and resultant 
inaccuracies in the poly depletion. In any event, density- 
gradient theory clearly provides continuous and smooth w 
sults for all gate voltages unlike the other methods. It is 
especially meaningful that it works best in strong accumula- 
tion where doping effects (in the substrate and the poly) are 
negligible and quantum mechanics dominates. As mentioned 
above, density-gradient theory also has the advantage of hav- 
ing a well-defined connection to the real physics of the prob- 
lem. 
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Fig. 5. Density and potential profiles as computed by den- 
sity-gradient theory for a bias near flatband. Notice the dipole 
in the poly due to the quantum confinement. 

99 



Finally, an interesting phenomenon associated with the 
quantum exclusion effect may be noted in the carrier profiles 
nw’flat-band as plotted in Fig. 5.  The quantum exclusion 
induces a dipole in the near surface region of the poly. The 
strength of this dipole in our example is given by the height 
of the potential step in the poly in Fig. 5 (roughly 20mV). 
This dipole appears to cause a bump in the quantum space- 
charge capacitance of the gate. 

IV. FINALREMARKS 

In summary, this work demonstrates the utility and 
power of the density-gradient approach for analyzing equilib- 
rium quantum effects in ultra-thin-oxide MOS structures. 
This approach not only allows simple yet quantitatively accu- 
rate simulation of equilibrium C-V characteristics but, in 
contrast to the exact alternative [5], can also easily and con- 
sistently be extended to multiple dimensions and to non- 
equilibrium cases including situations with oxide tunneling. 
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