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Abstract-A new model of (311) defect evolution is proposed. The 
defects are characterized by their mean size and their concentration. The 
flux between free interstitials and (311) defects is described by an expres- 
sion obtained by extending the classical theory of nucleation. The model is 
shown to agree well with the experimental data on (311) defect evolution 
of Eaglesham et al. and with the boron TED data of Chao et al. 

I. INTRODUCTION 

It has been well established in recent years that (31 1) de- 
fects are an important source of transient enhanced diffusion 
(TED) [l], [2]. Models to describe the evolution of (311) 
defects cover a wide range of complexity, from a simple solu- 
bility approximation [3], to solving rate equations or a Fokker 
Planck equation. Moment-based models have been developed 
as a compromise between efficiency and accuracy [4], [5], [6] .  
They describe the defect size distribution by its first few mo- 
ments. In the most simple case only the first moment, i.e. the 
concentration of interstitials contained in the clusters, is con- 
sidered. With this model [4] it is possible to explain the most 
apparent features of TED, including the approximately steady 
level of enhancement during its duration, and the dependence 
of its duration on implant energy and dose. However, since 
there is no information about the cluster size, the dependence 
of the interstitial binding energy on the defect size is not taken 
into account. This results in a somewhat too abrupt decay of the 
simulated number of clustered interstitials as a function of time, 
and in the inability of the model to predict the experimentally 
observed [3] gradual decrease in the diffusivity enhancement 
during the duration of TED. Law and Jones [5] showed that the 
exponential-like decay of the number of clustered interstitials 
may be reproduced by a two-moment model, considering the 
density of defects (or equivalently, the mean number of atoms 
per defect) in addition to the concentration of interstitials in 
defects. Their Ostwald ripening model seems to be empirical, 
though, and they identified the need for further improvement. 
Gencer and Dunham [6] applied a three-moment model [7] to 
(31 l} defects. Investigations of this model [8] show that the 
size distribution function tends to be separated into two distinct 
parts. One is located at the smallest cluster sizes and contains 
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only a small fraction of the clustered interstitials, once most 
free interstitials have been absorbed by clusters. The other one 
becomes increasingly narrow with time and moves to larger 
cluster sizes, reflecting the Ostwald ripening process. This 
suggests that it should be possible to neglect the first part and 
to approximate the second part by a &function, so that two mo- 
ments are sufficient to describe the size distribution function. 

In this paper we present a new two-moment model of (31 1) 
defect evolution. The model and its motivation by the classical 
theory of nucleation are described in Section 1I.A. The formulae 
for Gibbs’ free energy and the reaction rate constant used are 
presented in Sections 1I.B and II.C, respectively. The model 
predictions are compared in Section I11 with experimental data 
on the temporal evolution of the (3 1 l} defect size and density 
[l], [9], and on the time variation of the B diffusivity during 
TED [3]. Conclusions are presented in Section IV. 

11. MODEL 

A.  Model equations 

We assume that the clusters may be described by their mean 
size m and their concentration Cc in clusters per ~ m - ~ .  The 
model thus has to describe the flux between free interstitials 
(concentration CI) and clusters of size m. The two quantities 
determining this flux are the rate constant IC, of the reaction 
between interstitial and cluster of size n, and the Gibbs’ free 
energy AGn as a function of n. Typically, the Gibbs’ energy 
function has a maximum between n = 1 and n = m (Fig. l), 
defining the critical size nc. Thus the classical theory of nu- 
cleation [lo], [ l l ]  may be used to determine the rate of cluster 
formation. Assuming steady state conditions, the nucleation 
rate is proportional to the concentration CI of interstitials, to 
the growth rate IC,,CI of a cluster of critical size nc, and to a 
Boltzmann factor containing the energy barrier AG,, - AG1 
a cluster has to overcome to grow from a single interstitial 
(viewed as a cluster of size 1) to a stable precipitate. In order 
to describe also the reverse current of dissolving clusters, we 
propose that the dissolution rate may be written in an analogous 
way in terms of the concentration of clusters Cc, the dissolution 
rate IC,, C:, of a critically sized cluster, and the energy barrier 
AGnc - AGm to be overcome for dissolution (cf. Fig. 1). The 
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B. Gibbs’ Free Energy 

The Gibbs’ free energy of a cluster of size n is given by 

( 5 )  

where Css is the interstitial concentration in equilibrium with 
an infinitely large (31 I} defect (“solid solubility”). AGe,XC is 
the excess energy due to surface and strain effects. Although it 
must be a sublinear function of size in order for the defects to 
be stable, the exact form is unknown. In the absence of further 
information it is taken as being similar to a planar defect 

AG, = -nkT In - CI + A G F  
C S S  

A G ~  = aon‘I2 (6)  

We therefore have three parameters to be fitted to experimental 
data: prefactor and activation energy of Css, and ao. 

C. Reaction Rate Constant 

limited part IC: and a reaction limited part tc‘, according to 
The reaction rate constant IC, is composed of a diffusion 

AGn t 
I , AGnc 

Fig. 1 .  Gibbs’ free energy as a function of cluster size (schematic). Free 
interstitials have a free energy barrier of AGn, - AGI for nucleation. 
Clusters of size m have a free energy barrier AG,, - AG, for dissolution. 

continuity equation for clusters therefore reads 

Z is the Zeldovich factor which is given by [ 121 

C i  is the concentration of interstitials which would be in equi- 
librium with a cluster of size n (61. Since for a critically sized 
cluster the probability for growth equals the probability for dis- 
solution, Cic is identical to the actual interstitial concentration 
CI. Apart from nucleation and dissolution, existing clusters of 
size m may grow according to the growth law 

(3) 

The third equation for the three dependent variables CI, CC, 
and m is the continuity equation for interstitials 

(4) 

In the final declustering phase the size m gets smaller than 
the critical size n,. In this case we replace n, in Eqs. 1 and 
2 by m, thus eliminating the energy barrier for dissolution. 
Moreover, we damp the cluster dissolution (Eqs. 1 and 3) by 
an exponential function with a time constant small compared 
to the overall TED time to avoid time stepping problems which 
have also been reported in [SI. 

IC, = (l/IC; + I/& 

The reaction limited part can be written 

AGn+n+ I 
IC: = v&A exp (- k~ ) 

(7) 

where v = 4D1/6~  is the diffusion jump frequency, 6if the 
thickness of the interface between defect and matrix (taken 
equal to the nearest neighbor distance, 6 = 2.35 A, in the 
matrix), and A the surface of the reaction volume. The { 3 1 1 } 
defects are assumed to have rectangular shape (length 1, width 
w) and to grow only in length direction. The reaction volume 
is taken as two cylinders with capping half spheres around the 
short edges of the defect [6]. The radius TO of the cylinders and 
half spheres is the capture radius and is assumed to be equal 
to the lattice constant (5.43 A). The Gibbs’ energy AGn+n+ 1 

a cluster has to surmount to grow from size n to size n + 
1 is neglected, since in our model we evaluate reaction rate 
constants only at the critical size and at the size m which is 
usually supercritical. 

The diffusion limited reaction rate constant may be estimated 
for each end of the defect by approximating the reaction volume 
by a spherically symmetric ellipsoid. By introducing further 
approximations the general formula [ 131 may be reduced to 

IC”,’ M 47r(w/4 + (9) 

The combined effect of the two reaction volumes is = IC”,’ 

in the limiting case 1 + 0, and IC: = 2 4 ’  for 1 + ca. As a 
smooth interpolation between these two cases we assume 
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Fig. 2. (31 1) defect evolution after 40 keV, 5 x I O l 3  cm-* Si implantation: 
defect density and size during anneal at 815OC. Lines: simulation results 
obtained with the proposed two-moment model. Symbols: experimental 
data from Eaglesham et al. [ 11. The error bars of the experimental data 
result from assuming a defect width of either 4 or 5 nm. 

The width w and the length 1 are calculated from the areal den- 
sity of interstitials in (31 1)  defects which has been determined 
as 5 x lOI4 cm-2 [14], assuming a fixed width for I > 20 and 
1 = w for smaller defects [6]. Although the errors introduced 
by the approximations in the derivation of Eqs. 9 and 10 might 
be as large as a factor of 2, they are unlikely to influence the 
final result, since it is much more sensitive to changes in the 
Gibbs' energy than to changes in the reaction rate constants. 

111. RESULTS 

The model equations presented in Section I1 have been im- 
plemented in PROPHET [ 151. The diffusivity DI and the equi- 
librium concentration C; of interstitials have been chosen ac- 
cording to Bracht [ 161. The surface recombination length has 
been assumed to be 10 W. The initial conditions for the in- 
terstitial distribution after ion implantation are determined by 
calculating the net interstitial concentrations (i.e. interstitial 
minus vacancy plus dopant concentrations) using the Monte 
Carlo simulator IMSIL [ 171, [ 181. It is assumed that no clusters 
exist after ion implantation and that the size of newly formed 
clusters initially is 30. The choice of the initial cluster size 
does not influence the final results as long as it is significantly 
smaller than the size calculated for the smallest anneal time 
and larger than some minimum value, below which clusters 
may not form in the model. The latter restriction is probably 
due to the limited applicability of nucleation theory in case of 
small critical sizes, 

The solubility and the Gibbs prefactor were fitted to the data 
of Eaglesham et al. [I], [9] (Figs. 2 and 3). The values are 
C,, = 3.6 x cm-3 x exp(-2.22 eV/kT) and a0 = 4 eV, 
respectively. As can be seen from Fig. 2 the model captures the 
Ostwald ripening effect, i.e. the increase in cluster size and the 
decrease in cluster density with time. A good fit of the temporal 
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(31 1) defect evolution after 40 keV, 5 x IOl3  cm-* Si implants: 
interstitial density stored in (31 1) defects during various anneals. Lines: 
simulation results obtained with the proposed two-moment model (solid 
and dotted lines) and with the earlier one-moment model [4] (dashed lines). 
Symbols: experimental data from Eaglesham et al. [I] ,  [9]. The error bars 
of the 8 15" C data result from assuming a defect width of either 4 or 5 nm. 

Fig. 3. 

evolution of the defect density and size at 8 15°C (Fig. 2), and of 
the number of interstitials in defects at different temperatures 
(Fig. 3) is obtained. For comparison, the results of the one- 
moment model [4] are shown in Fig. 3, assuming a (31 I }  
cluster evaporation energy of 3.57 eV. Taking the changing size 
and changing binding energy of the clusters into account clearly 
gives a better match to the overall shape of the dissolution 

The same model can then be applied to simulate the TED 
experiments of Chao et al. [3]. In these experiments the intersti- 
tial supersaturation after Si implants was monitored by TED of 
a boron marker layer as a function of anneal time at 750°C. In 
order to calculate the diffusivity enhancement D B / D ~  from 
the measured profiles, an intrinsic equilibrium diffusivity D F  
of 4.5 x lo-'* cm2/s at 75OOC was assumed. This is a lit- 
tle lower than a simple extrapolation from high temperature 
intrinsic measurements, but still within error tolerances. The 
simulated diffusivity enhancement was calculated by evaluating 
l / t  x J Cl/C; dt at the position of the marker layer. With- 
out changing any parameter with respect to the simulation of 
the Eaglesham data, the new model agrees well with the TED 
data (Fig. 4). The decrease in the diffusivity enhancement 
observed at short anneal times reflects the decrease in the in- 
terstitial supersaturation caused by the increase in the binding 
energy of interstitials to { 3 1 I }  defects during Ostwald ripening. 
The earlier model, which uses a fixed binding energy, cannot 
capture this effect. Although the evolution of the transient is 
well described by the present model, the final displacements 
are somewhat overpredicted. This does not directly affect the 
present model, since the final displacements are independent 
of the cluster model, all clusters having dissolved and given up 
their interstitials at the end of the transient. The deviation may 

curves. 
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be due to uncertainties in the starting damage condition, or to 
boron clustering which has been reported at low concentrations 
in these layers [19]. 

IV. CONCLUSIONS 

A model of { 3 1 1 } defect evolution has been proposed which 
uses the classical theory of nucleation for cluster formation, 
an analogous approach for cluster dissolution, and a simple 
growth law to describe the change in cluster size. The Ostwald 
ripening effect is included in this model by the combination 
of cluster dissolution and growth. It has been shown that after 
calibration of the model with data on { 3 1 1) defect evolution, 
simulations of boron TED agree well with the experimental data 
without change of any parameter. In contrast to a one-moment 
model, the new model is capable of predicting the variation 
of the diffusivity enhancement with time. A limitation is the 
inaccuracy in describing the initial nucleation and the final 
dissolution phase. In many cases this shortcoming will not be 
relevant, since these phases are short and the system behavior 
is determined by the long intermediate OstwaId ripening phase. 
Apart from this limitation, the model is general in nature, so 
it should be applicable also to other large defect types like 
dislocation loops. 
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