
Three-Dimensional Profile Evolution under Low Sticking Coefficient 

David Adalsteinsson and James A. Sethian 
Lawrence Berkeley National Laboratory and University of California, Berkeley 

Abstract-This paper describes a careful numerical 
study of the effects of low sticking coefficient for two 
and three dimensional structures. The model for re- 
flection is a cosine re-emission distribution with no 
dependence on the distribution of incoming particles. 
We calculate the limiting case for several different ini- 
tial topologies. We conclude that the limiting profile 
can not in general be replaced by an isotropic deposi- 
tion term, and demonstrate the effects of low sticking 
coefficient on complex structures. 

I. INTRODUCTION 

In this paper we study re-emission for deposition. 
Throughout, we assume a problem where there is a source 
above a wafer. The particles either partially deposit on 
the surface or reflect off and deposit elsewhere. We assume 
a constant sticking coefficient with a cosine re-emission 
distribution, consistent with SiH desorption measure- 
ments from Si [5]. This paper focuses on this effect, and 
ignores secondary effects such as surface diffusion. 

We consider primarily three dimensional problems. We 
analyze two types of problems, an axially symmetric prob- 
lem which is simulated as a two-dimensional problem, and 
a full three dimensional problem. In both cases, we solve 
the same speed equation, and the numerical techniques 
are similar. Both calculations can easily be performed on 
a modern workstation, and we used Sun Ultra and Apple 
Power Macintosh workstations for our calculations. 

11. EQUATIONS OF MOTION 

We begin by deriving the equation for the incoming 
intensity on the surface, which depends on the reflected 
dependencies off other parts of the front, and will lead 
to a integral equation. We will also derive the analytical 
limit when the sticking coefficient tends to zero. 

A .  General Equation 

For a given surface F, define S ( x )  to be the incoming 
source strength at a point x on I?, and ,B to be the sticking 
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coefficient. Let So be the source strength arriving from 
the external sources. Since we are assuming a cosine re- 
emission distribution, we have that 

where n(x) is the region of I? which is visible from 5 ,  

and 6(z,y) is the angle between the normal at x and the 
direction of the vector from x to y. 

This equation can be written as 

s = so + (1 - P)F(S) ,  

where F is a linear function that maps functions on I? 
into functions on I?. Only a certain fraction (given by p) 
of this intensity leads to deposition on the surface, and if 
T is the depositioa intensity, we then have that 

T = pSo + (1 - P)F(T)  

B. Two-Dimensional Version 

To formulate this problem in the axially symmetric 
case, we may rewrite the integral equation in terms of 
parameters given in the two-dimensional region. 

We note that care must be taken, since even though the 
front motion can be assumed to be symmetric, visibility 
between pairs of points and information about the part 
of the source seen by each point must be computed using 
the full three-dimensional problem. 

Define Qa(z)  as Qa(z , y )  = (xcos6,zsin6,y), which 
rotates a point around the z axis, and let P be the pro- 
jection from a point on the surface onto the corresponding 
point in the two-dimensional section. The previous equa- 
tion can now be written as. 

S(S) = SO(Z) + (1 - ~ ) B ( X ) ,  

where 

The surface can be parametrized by the two-dimensional 
path and the angle of rotation about the z axis. 
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where The Level Set Method is a front propagation scheme, 
which views the front as the zero level set of a scalar func- 1 cOs(e(QO(z), Qff(y))) cOs('(Qa(y), QO(z))) da, tion defined in all of space. For a given speed function, a 
partial differential equation is constructed for this scalar ~ I Q o ( ~ >  - Qa(~) l '  G ( X , Y )  = 

and the integral is over the angles a such that Qo(z) and 
Qm(y) are visible to each other in the three-dimensional 
problem. 

The normals at the points Q,(y) can be written in 
terms of the two-dimensional normal to the path at the 
point y. 

C. Low Sticking Coefficients 

Consider the problem where the sticking coefficient is 
very close to 0. Normalize the problem so that @So is 
constant independent of p, that is for a given @ we are 
interested in the solution of the problem 

Tp = T o  + (1 - P)F(Tp) .  

We wish to see how this behaves as p becomes arbitrarily 
small. Assuming continuity, the limit TO must satisfy 

To = TO + F(T0). 

In our simulations, we considered both problems, and 
analyzed the behavior as we reduced the sticking coeffi- 
cient. 

111. NUMERICAL IMPLEMENTATION 

Before discussing the results of the simulations, we de- 
scribe the numerical methods that go into solving this 
problem. We must calculate the intensity on the front 
for both the two and three-dimensional problem and ad- 
vance the front in time. To find the source intensity, we 
need to solve an implicit problem. We discretize the front 
into line segments in two dimensions and panels in three 
dimensions. 

If S = (Si) is the discretization of the source strength 
along the front, the function F ( S )  can be written as a 
matrix vector multiply of the form F ( S )  = OS, since F 
is a linear function. Thus, the problem that needs to be 
solved is 

(I - (1 - @)O)S = so. 
This solution must be produced at each time step of 

the evolution since the front and the discretization will 
change. This matrix is solved using an iterative tech- 
nique rather than a general linear solver since we know 
additional information about the properties of O. For de- 
tails see [4] 

A .  The Level Set Method 

Central to this numerical technique is the use of the 
Level Set Method, introduced in [7], based on previous 
work in [8]. For details about Level Set Methods, see 
[9]; for modeling and simulations applied to topography 
evolution see [2]-[4]. 

function, such that the motion of the zero level set tracks 
the motion of the front under the given speed function. 
The benefits of this approach are that topological changes 
of the front are easily handled, since the scalar function 
needs no special consideration for those cases. The advec- 
tion of the scalar function needs to be done in a upwind 
fashion, borrowing techniques from fluid mechanics. For 
more information see [2], [7], [9]. 

The extra cost of casting this into a higher dimensional 
problem can be countered by using adaptive methods, de- 
scribed in [l]. 

B. The Source 

For three-dimensional simulations it is impractical to 
calculate at each point on the front the exact region of the 
source that is visible. A better approach is to adaptively 
decompose the source into a collection of unidirectional 
vectors. The decomposition is made such that each vector 
represents the intensity from its corresponding solid angle, 
and the length (strength) of each vector is approximately 
the same for each vector. That way we resolve the angle 
regions where the source has high intensity better than 
the regions where the intensity is low (angle with the z 
axis is very large). 

For each point on the front it is necessary to find which 
vectors are visible, and add up their contributions. It 
is possible to determine the visibility very efficiently by 
scanning through the q5 surface in the direction of the 
vector, looking for intersections with the zero level set. 
The line (z + tu, y + t v  + z + t w )  starting at a point on the 
surface and heading in one of the source direction needs 
to be projected down to two-dimensional cross section, 
where its trace will be the path 

(d (z  + t U ) 2  + (y + tv)2,  t w )  

C. Three-Dimensional Problem 

From before, the strength of the incoming intensity is 
given by 

where 
S(z) = SO($) + (1 - P)B(z) ,  

If the surface is split into panels ( P j ) ,  and the intensity 
is sampled at points (zj) inside those panels, we get the 
approximat ion 

sj = s; + (1 - P)Bj, 

where 
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Define 

This changes the problem into finding the solution to the 
linear system 

s = so + (1 - p)ns. 

D. Two-Dimensional Problem 

Similarly as before, we split the front into line segments 
(Pi), and create the linear system 

i 

where 

ai ,3 . = J, G(zj (1,o)dY. 

Special care needs to be taken when computing the vis- 
ibility that goes into G(zj,y). This is because it is not 
enough to determine if two points are visible in the two- 
dimensional cut or not. For each pair (z,y) of points on 
the path, we must find the angles (Y such that the the 
point Q,(y) is visible from Q o ( x ) .  This turns out to be 
the union of two intervals. These intervals can be found 
by scanning over the front. If N is the number of seg- 
ments on the path, the cost of this visibility calculation 
is O ( N )  and since there are N 2  points on the front, the 
cost of creating the matrix is O ( N 3 ) .  

E. Solving the Matrix Equation 

When solving the system (I - (1 - P)Q)S = SO, the 
matrix is dense and non symmetric. General linear solvers 
are slow, especially in three dimensions, and since the 
matrix is generally dense, it is not possible to use sparse 
solvers. However, we note that the matrix norm is strictly 
less than 1. This follows from the observation that the 
matrix describes how much gets redeposited after a single 
reflection. Since the front does not contain any closed 
voids the sum of material will always decrease after the 
reflection since something will escape. Therefore 

00 

( I  - (1 - p)n)-l = C(1- P ) W  
k=O 

We note that the series converges for all values of p, 
including p = 0. 

IV. NUMERICAL RESULTS 

A .  Reflection effects 

First, we present in Fig. 1 simulations on the shape that 
led to this consideration, that of a cylindrical via and the 
source above the surface has a cosine distribution as a 
function of the angle from vertical. A similar simulation 
was done in [6]. 

Fig. 1. Source Deposition (2D),’ Sticking coefficient is 1.0 

Fig. 2. Source Deposition (2D), Sticking coefficient is 0.01 

This simulation might lead to the conclusion that the 
limiting case is an isotropic deposition; however the result 
is a little more subtle. 

To try to isolate what effects redeposition has, consider 
the case of a via where the deposition source is compleatly 
vertical. Therefore all deposition on the sides is started by 
particles reflected off the bottom of the via. The incom- 
ing intensity will translate everything in the z direction. 
The result is shown in Fig. 3 This is a 2D simulation, 
simulating only the right half of the cave shown in the 
two-dimensional drawing. 

For some problems, it is obvious that the ending shape 
will not resemble an isotropic deposition. Consider the 
case of a cavelike structure, where the shape is a cylin- 
drical hole, but the radius of the opening is larger at the 
bottom. The result is shown in Fig. 4. 

Lastly, In Fig. 5 we present results from three- 
dimensional simulations. This is a T-junction, and the 
source above it has the same cosine distribution as in the 
problem before. This problem could not be modelled as 
a two-dimensional problem. 

V. CONCLUSION 

We have done a careful study of the effects of small 
sticking coefficient. We conclude that for some special 
topology and source distribution the resulting deposition 
will look isotropic. But in general this is not the case. 
We have described a robust numerical technique for two 
and three-dimensional problems. This paper only focused 
on the re-emission process, but previous work [2]-[4] has 
included other types of processes such as surface diffusion, 
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Fig. 3. Unidirectional etching (2D), Sticking coefficient is 0.01 

Fig. 4. Unidirectional etching (2D), Sticking coeflicient is 0.01 

masking, sputtering, both for two- and three-dimensional 
problems. 
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Fig. 5. Source Deposition in 3D, Sticking coefficient 1.0 and 0.01 
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