
An Experimental Methodology for the Estimation of Spatially 
Correlated Parametric Yield in Thin Film Devices 

Edwin T .  Carlen and Carlos H. Mastrangelo 
Center for Integrated Sensors and Circuits 

Department of Electrical Engineering and Computer Science, University of Michigan 
Rm. 2405, EECS Bldg., Ann Arbor, MI 48109-2122, USA 

(3 13)-763-7162, FAX:( 3 13)-763-9324 

Abstmct- In this paper we present an experimen- 
tal methodology for parametric yield estimation that 
accounts for spatial correlations between features of 
the same device at specific wafer locations. Each de- 
vice feature is representative of a device parameter 
that must fit with a specific tolerance box and may 
be influenced by several steps of the manufacturing 
process. If the process flow is known and each of its 
steps is characterized in a spatially correlated manner, 
the feature pointwise probability density functions 
(PDFs) can be accurately reconstructed from the pro- 
cessing step pointwise PDFs. This method thus per- 
mits the estimation of pointwise device yield more ac- 
curately than the common multilevel (run,wafer,die) 
averaging approach. Because spatially correlated phe- 
nomena is subject to both random and systematic 
non uniformities, the pointwise step (PDFs) are de- 
termined by a decomposition process that separates 
the systematic and random error components. The 
systematic PDFs are determined from interpolation 
functions representing the spatial variations across the 
entire wafer lot, and the random PDFs are approx- 
imated using a combination of principle component 
analysis and factor analysis with a few uncorrelated 
random variables valid for the entire lot. 

I. INTRODUCTION 

Over the past two decades there has been much work 
in yield estimation, modeling, and design centering for 
semiconductor manufacturing [l]. In thin film devices, 
point defects determine the catastrophic yield loss while 
the uniformity variations determine the “out-of-spec” or 
parametric yield loss [2]. While many elaborate math- 
ematical models, techniques, and tools [3,4] have been 
developed for parametric yield estimation, most of these 
models are largely based on untested assumptions in the 
parameter distributions with very little hard supporting 
data [5]. For example, the most widely known statistical 
process simulator, FABRICS [3], uses monte carlo (MC) 
methods coupled with random disturbance generators to 
model the lot, wafer, and die level fluctuations. These 
disturbance models are based on assumptions of uniform 
average variances [6] for the entire lot and experimentally 
“tuned” inter-level average covariances. One of the pri- 
mary difficulties with this approach is that the spatial 
information is lost by the averaging process which may 
easily lead to incorrect yield estimates. 

l(a) For example, consider the wafer shown in Fig. 

where areas A and B have different device features that 
fall within the yield acceptability region. If areas A and 

Fig. 1. Representation of acceptable yield areas for differ- 
ent components of a device on a wafer. Even though the 
average yield in both diagrams is finite and constant, the 
configuration on the  left (a) has zero yield and (b) nonzero 
yield. 

B are not overlapping, the actual parametric yield is zero, 
but the average parametric yield is not. Therefore only 
through careful construction of spatially correlated (SC) 
PDF models an accurate yield prediction is made. 

This paper outlines a methodology for the estimation 
of SC pointwise parametric yield from a description of 
the device process and its SC process step PDFs. This 
methodology is used to generate figures of merit for syn- 
thetic process flows generated by the process compiler 
MISTIC [7]. Section I1 outlines the basic device represen- 
tation and an unifying vector representation of its basic 
features. Section I11 summarizes the technique for con- 
struction of SC pointwise PDFs for deposition and etch- 
ing processes. Section IV describes the connection be- 
tween the process flow, the step SC PDFs and the ulti- 
mate pointwise SC device parametric yield. 

11. BASIC DEVICE FEATURE REPRESENTATION 

In order to estimate the device yield, it is necessary 
to define a device representation that captures all of its 
characteristic features. The representation adopted here 
first partitions the device onto a series of distinct zones. 
Each zone is treated as a one dimensional stack of layers 
where all points within each layer parallel to the wafer 
surface are considered equivalent because they are sub- 
ject to the same processing conditions. Consider the 
MOSFET shown in Fig. 2 where the device is parti- 
tioned into seven distinct zones expressed as device vector 
d’ = { z l ,  z2,  z3, ..., t7, ~ 9 ) ~ .  In this device, even though 
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Fig. 2. MOSFET depicting the partitioning of the device 
into zones for parametric yield estimation. 

the gate oxide spans many zones, each zone containing 
the gate oxide must be considered separately. The char- 
acteristic device features within each zone are identified 
with a vector of parameters. I,n this paper we focus on 
the vector of layer thicknesses t which is directly affected 
by the processing steps and ultimately influences the de- 
vice characteristics. In this example, the layer thickness 
vector in zone zg is zg = {tl1t2,t3} where t l ,  t 2 ,  and t3 
are the aluminum, polysilicon gate, and gate oxide thick- 
nesses in the flat areas of zg, respectively. This vector was 
subject to different processing steps than that for zone 
213 = {t4,t5,t6}, and so on. 

In order to simplify the problem further, we assume 
that devices are infinitesimally small. This assumption is 
consistent with the observation that the scale where spa- 
tial uniformity changes substantially is much larger than 
the device size. Therefore, the parametric yield of an en- 
tire device is associated with a particular point 3: in the 
wafer lot. With the aid of this simplifying representa- 
tion the connection of individual process steps with the 
device features is clear. Each layer in a zone is either 
grown, etched, or unaffected by individual process steps. 
If each process has a rate and time, assuming linearity, 
each thickness in each layer at point z is determined from 

where Di(z) is the deposition rate of the original material 
i, q,, is the deposition time, Qj(z) is the etch rate of the 
j t h  etchant on tj, S,j, its selectivity, aij is a weight coef- 
ficient, and N is the number of etching steps affecting ti. 
Each deposition D and etching rate Q is a random vari- 
able containing both systematic and random variations. 
Eq. (1) can therefore be used to find the SC PDF for the 
device vector i i f  the process step SC PDFs are known. 

This estimation methodology is used in the process 
compiler MISTIC. MISTIC is a process compiler which 
uses a database of experimentally characterized materials 
and processing steps and a device cross section to generate 
process flows as shown in Fig. 3. The compiler reads the 
device representation and selects the appropriate process 
steps to construct it. Each of these process steps contains 
a model for its SC rate PDF stored in the database. This 
information is used in Eq. (1) to estimate the device SC 
PDF and its parametric yield. Integration of the device 

h h 

Fig. 3. Organization of the parametric yield estimator 
within the MISTIC pr ocess compilation environment 

PDF over the specified acceptability region results in the 
pointwise parametric yield estimation shown on the right 
side of Fig. 3. Section 111 presents the formulation of 
models for deposition and etching rate PDFs and Section 
IV shows how to combine them. 

111. STATISTICAL CHARACTERIZATION OF THIN FILM 
PROCESSING STEPS 

The effect of a process step on a device is influenced by 
both deterministic and random factors. Deterministic er- 
rors are caused by systematic factors inherently present in 
the processing equipment such as temperature and pres- 
sure gradients that cause predictable non uniformities on 
the sample. Another important source of systematic error 
is the loading effect where local rates are affected by the 
balance between the diffusion of fresh reactants and the 
depletion of species. In many process steps, the system- 
atic spatial variations are much larger than the random 
parts; hence they must be included for accurate paramet- 
ric yield estimation [a]. 

Random fluctuations in the process step rates are 
caused by several factors that change randomly both dur- 
ing and between runs. For example, in LPCVD reactors, 
the deposition rate is affected by two types of random fluc- 
tuations. Rate fluctuations are introduced through errors 
in the control settings such as pressure, temperatuse, and 
gas flow rates. These errors are associated with identi- 
fiable parts of the equipment which remain uncontrolled 
or out of spec. Random rate fluctuations are also intro- 
duced through the presence of random processes such as 
gas turbulence and other statistical physical phenomena. 
In many VLSI processes, the dominant source of random 
fluctuations is the former hence their random behavior 
can be modeled well with just a few random variates. 

As part of this study, we have performed a statis- 
tical characterization of LPCVD and reactive growth 
steps. Approximately 35,000 thickness measurements for 
LPCVD oxide, nitride, polysilicon, and thermal oxide thin 
films were recorded represeriting a total of 40 furnace runs. 
Each run consisted of a lot of 25, 100 mm wafers. Within 
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each lot, 875 measurements were performed with 35 lo- 
cations per wafer. From these measurements a reduced 
model for the SC rate PDF was extracted. A good fitting 
model for the deposition and growth rates 3 at each point 
within the lot volume that includes both systematic and 
random rate components is 
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where E(.) is the estimated deposition rate, Os(.) is the 
systematic rate variation, 4 is a zero mean random rate 
fluctuation, and x is the physical location of the point 
in the lot. Eq. (2) tells us that the rate variations are 
primarily influenced by the systematic factor D, (z) while 
the randomicity is mostly determined by an “average” 
rate fluctuation. This approximation is justified by the 
large amount of correlation observed between the points 
in the lot. This simplifying expression is obtained using a 
combination of principle component and factor analysis [8, 
91. A refined version of Eq. (2) includes both an “average” 
and a small “local” fluctuation. Experimentally, the best 
fit was obtained using 
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where 41 and 4,,, are equal variance lot and wafer level 
independent random variables with w % 0.95, and &,(j) 
depends on the wafer number j. Fig. 4 depicts a scatter 
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Fig. 4. Scatter plot depicting the closeness of the fit between 
sample variance calculated from ten LPCVD furnace runs 
and estimated variance calculated with Eq. (2) and Gaus- 
sian random variates. One lot contained 875 measurement 
locations with 35 locations on each wafer 

plot showing the experimental variance and that predicted 
by the model of Eq. (2). The experimental variance was 
calculated from 10 LPCVD oxide furnace runs with 875 
measurement locations within a single lot. The estimated 
variance was generated from Eq. (2) using the two added 
gaussian random number generators of Eq. (3). As evi- 
dent in Fig. 4, Eq. (2) reproduces the variance satisfac- 
torily while the position dependent randomness has been 
almost completely retained. The average relative error 

~ 
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between all calculated and estimated variances is approx- 
imately 5% for all of the thin films mentioned. 

In Eq. (2), the systematic variation term Os(.) repre- 
sents the repeatable thickness variations across the wafer 
surface and lot. Fig. 5(a) depicts an example of the thin 
film thickness variation across the surface of a LPCVD 
oxide wafer and Fig. 5(b) depicts an example of the thin 
film thickness variation along the length of the boat for a 
single LPCVD oxide furnace run. The systematic distri- 

Fig. 5. 
level (b) lot level 

Thickness variations for LPCVD oxide (a) wafer 

Fig. 6. Comparison between analytically calculated and 
measured (MC generated) lot level PDFs for a single 
LPCVD furnace run of nitride 

lytically calculated lot level PDF and the MC estimated 
PDF for a single furnace run of LPCVD nitride showing 
an excellent agreement of the analytical approximations. 
We are currently in the process of developing statistical 
process models for etching steps. 

IV. PARAMETRIC YIELD CALCULATIONS 

The sectiozs above outline the construction of the de- 
vice vector d and describe how individual process steps 



affect it. In the most general sense, each thickness com- 
ponent in the m-dimensional device vector is related to 
the process steps by the following matrix relationship 

(4) 

where 3 is the vector containing all n process step rates, 
and P is an m x n process matrix. If the process affects 
the device vector linearly, the process matrix has the form 

P = M f f S - 1 7 ,  ( 5 )  

where M is a boolean masking matrix, a is the weight co- 
efficient matrix, s-’ is the inverse selectivity matrix, and 
T is the n x n diagonal process time matrix. The mask 
matrix M specifies if any interaction between the device 
vector components and processing steps exists. The point- 
wise parametric yield is hence calculated as [5] 

rO0 

Y(T, z) = / @ (< B )  p (< z) d< 
J-00 

where p(< x )  is the pointwise multivariate SC PDF of the 
device thickness vector, and (a(;, B )  is an indicator func- 
tion dependent on the tolerance box B = {t‘p,Ta}, 

and where v is the dimension of the ith subcovariance 
matrix, and 6 is a subset vector of the device thickness 
vector The q subcovariance matrices are determined 
from analyses of the masking matrix. 

(11) can be performed with 
the assumption that the yield calculations are probabil- 
ity evaluations of polyhedrals under a reduced dimen- 
sion multivariate gaussian distribution. The calculation 
of these probabilities are determined numerically over a 
v-dimensional polyhedra using the methods cited in [lo]. 

The evaluation of Eq. 

SUMMARY 

An experimental methodology for the estimation of spa- 
tially correlated parametric yield has been presented. The 
method uses approximate models for the SC PDFs of a 
vector specifying the device features. The SC PDFs for 
the vector are obtained using experimentally determined 
SC PDFs for individual process steps and knowledge of 
the process flow. The yield calculation is performed nu- 
merically using a correlated multivariate gaussian distri- 
bution obtained from the experimental data over a speci- 
fied tolerance polyhedra. 
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where Et is the covariance matrix of t‘ and {Za, are 
the lower and upper thickness boundaries, respectively. 
In order to perform the integration though, Et must be 
determined. Since the device vector depends linearly on 
the process rate vector 2, then 

Et = P C R P T .  (9) 

In general the calculation of Eq. (8) is not easily per- 
formed for high dimensions; however, since not all device 
components in d are influenced by all processing steps be- 
cause of causality and blocking considerations, M and Ct 
are in most cases relatively sparse. Therefore Eq. (8) can 
be partitioned into a product of decoupled integrations 
with smaller dimensions 

+ 

a 
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