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Abstract— The computational cost of many simula-
tions is dominated by the solution of large, sparse sys-
tems of linear equations.
especially when combined with suitable precondition-
ing, are powerful algorithms for the iterative solution
of such linear systems. One of the features of Krylov-
subspace methods is that the matrix of the linear sys-
tem is only used in the form of matrix-vector prod-
ucts, and thus sparsity is naturally exploited. In re-
cent years, there have been many advances in Krylov-
subspace methods for the solution of large, sparse,
nonsymmetric linear systems. In this paper, we sur-
vey some of these recent advances, especially in the
area of Lanczos-based methods. We also discuss the
use of state-of-the-art Krylov-subspace methods in de-
vice simulation.

I. INTRODUCTION

The computational cost of many simulations is domi-
nated by the solution of systems of linear equations,

Az=b, (1)

where A is a large, but sparse, nonsingular matrix. Typ-
ically, these large, sparse linear systems arise from dis-
cretization and possibly linearization of partial differential
equations (PDE’s) that model the process to be simulated.

As an example, consider the classical drift-diffusion
equations [19], [22] for the modeling of semiconductor
structures. The drift-diffusion equations are a coupled
system of PDE’s for the electrostatic potential ¥{x, t), the
electron concentration n(x,t), and the hole concentration
p(x,t). The equations can be written as follows:

=V - (eVY)+q(n—p-C(x)) =0,
on

—q —5}'-+ V - -J,+qRu(n,p) =0, (2)
dp
‘I%"‘V'Jp_qu(”vp) =0,

where €, ¢, C, Ry, and R, are the electron charge, the
dielectric permittivity, the net impurity (doping) concen-
tration, and the net electron and hole recombination rates,
respectively. Furthermore, in (2), J,, and J,, are the elec-
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tron and hole current densities. They are defined as
Jon=—qpnn V¢ +qD,Vn,
Jp =—qupp VY —qDpVp,

where p, and p, are the electron and hole mobilities, and
D, and D, are the electron and hole diffusion coeflicients.
Energy balance (EB) or transport {ET) modeling of semi-
conductor structures leads to PDE’s that are similar in
mathematical character to (2)—(3); see, e.g., [19].

We now focus on the static problem and assume
dn/ot = Op/dt = 0. In this case, the PDE’s (2) (with
suitable boundary conditions) and (3) represent a cou-
pled system of boundary-value problems for the functions
¥(x), n(x), and p(x), where x € Q and Q C R% d = 2
or d = 3, is the two- or three-dimensional device struc-
ture. To solve (2)—(3) numerically, one first chooses an
appropriate, in general irregular grid for Q, and then dis-
cretizes the system of PDE’s using a finite-element or
finite-volume scheme. The result is a large, sparse sys-
tem of nonlinear equations,

3)

L
z=|n|. (4)
P

G(z) =0, where G: R¥ = R¥»,

Here, v is the number of grid points, and %, n, p are
vectors of length v whose components are approximations
of the function values ¥(x), n(x), p(x), respectively, at
the grid points. The nonlinear system (4) is solved by
a Newton-type method. Computing the Newton search
direction requires the solution of a large, sparse linear
system (1), where A = G’ is the Jacobian of G, at each
Newton iteration. For the drift-diffusion equations, these
Jacobians are nonsymmetric.

For linear systems of small size, the standard approach
is to use direct methods, such as Gaussian elimination.
These algorithms obtain the solution of (1) based on a
factorization of the coefficient matrix A. Direct methods
have been adapted with great success to large, sparse lin-
ear systems; see, e.g., [8],[18] and the references therein.
In fact, sparse direct methods are now widely used for the
solution of large, sparse linear systems, especially for two-
dimensional simulations. However, for the large, sparse
linear systems arising from PDE’s for three-dimensional
simulations, direct solution methods have excessive stor-
age requirements, and it becomes prohibitive to use them.
For three-dimensional modeling, iterative methods are



usually far more efficient, and often the only way to tackle
the large, sparse linear systems arising in such simula-
tions.

Krylov-subspace methods, especially when combined
with suitable preconditioning, are powerful algorithms for
the iterative solution of large, sparse linear systems (1).
One of the features of Krylov-subspace methods is that
they use the matrix A of (1) only in the form of matrix-
vector products, and thus they naturally exploit the spar-
sity of the linear system.

In recent years, there have been many advances in
Krylov-subspace methods for the solution of large, sparse,
nonsymmetric linear systems; see; e.g., [10], {20] and the
references given therein. In this paper, we survey some of
these recent advances, especially in the area of Lanczos-
based Krylov-subspace methods. We discuss the design
of robust and efficient iterations that remedy the erratic
convergence behavior of earlier algorithms, show how pos-
sible breakdowns in the underlying Lanczos process can
be avoided, and describe a block method for the solution
of systems with multiple right-hand sides. We also discuss
the use of state-of-the-art Lanczos-based Krylov-subspace
methods in device simulation.

II. KRYLOV-SUBSPACE METHODS

We consider linear systems (1) where A € CNVXN
is a nonsingular, in general non-Hermitian matrix and
b e CN. An iterative scheme for the solution of (1) is
called a Krylov-subspace method if, for any initial guess

zo € CV, it produces a sequence of approximations to
A~'b of the form

21,23, ...,2%,,...,

5
Zy € Zo + ICN(A,I‘()) ( )

where for all p.

Here, rg = b — A zg is the residual vector associated with
the initial guess zg, and

Ky(A,rp) := span {rO,Aro,...,A“—lro} (6)

is the p-th Krylov subspace of CV (induced by A and ry).
The key feature of Krylov subspaces is that already for
u <€ N, Ku(A,rg) often yields very good approximations
z, ~ A~ b even though the dimension p of K, (A ro) is
much smaller than the order N of the matrix A. This is
especially so when A is a suitably preconditioned version
of the coefficient matrix of the linear system to be solved.
While Krylov subspaces have good approximation prop-
erties, the power basis A" rg, j =1,2,...,u,used in the
definition (6) is numerically unstable. A second issue is
the choice of the actual iterates z,. In fact, any viable
Krylov-subspace method has two main ingredients:

(i) A procedure to generate suitable basis vectors for
Ku(A, ro);

(i1} A procedure to generate iterates z,,.

In the next two subsections, we discuss the choice of (1)
and (ii).
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A. Basis Vectors

The goal is to compute a sequence of vectors {v,}u>1
such that

span{vi,va,..., v} = K (A,rg) forall p>1. (7)

There are two distinctive approaches to this task. The
first one is the Arnoldi process [2]. It produces numer-
ically “optimal” basis vectors in the sense that the v,’s
are orthonormal:

H —
_{

I
0

if j = p,
ifj#p,

However, for general non-Hermitian matrices A, this op-
timality comes at a rather hefty price. Indeed, given the
vectors vi,va,...,v,, the construction of the next vec-
tor v,41 is only possible by means of a “long” recurrence
that involves all previous vectors. More precisely, v, 41 is
computed via a recurrence of the form

v for all

j Iy

1

hu-{—l,u

Vyut+l =

u
Av, - § :Vj hju
i1

As a vesult, all basis vectors have to be stored, and the
work per p-th iteration grows linearly with p. The long
recurrences truncate to short recurrences only for Her-
mitian matrices A and for some very special classes of
non-Hermitian matrices; see [10].

A second approach is the Lanczos process [16]. It uses
“short”, namely, in the generic case, three-term recur-
rences to construct the vectors {v,},>1, but it gives up
optimality of the basis. Moreover, in contrast to the
Arnoldi process, which only involves matrix-vector prod-
ucts with A, the Lanczos process involves multiplications
with both A and its transpose AT. In fact, the Lanczos
process generates two sequences of vectors

(8)

The first sequence, the right Lanczos wectors, again sat-
isfy (7), while the left Lanczos vectors {w,},>1 span a
second sequence of Krylov subspaces:

{V,_JuZl and {wN}HZl'

span{wy, Wz, ..., W,} = IC“(AT,I) forall pu>1.

Here, 1 € CV, 14 0, is an arbitrary vector, usually chosen
as a random vector. In the generic case, the sequences (8)
are generated by means of three-term recurrences of the

form

1
V4l = . (Avu =V Oy = Vi1 ,B;L)v
,u
1 T 5 ,
Wyut1 = :/ ™ A Wy — W, 0y — Wy ﬁu)v (9)
1
wEAv“
where o), = ——.
WiV,



Furthermore, the coefficients «,, 8, B,t, Yu+1, and 41
in (9) are chosen such that, in the generic case, the right
and left Lanczos vectors are biorthogonal:

wr

TV =wi,v; =0 forall j=1,2,...,0 (10)

However, it turns out that enforcing the biorthogonality
condition (10) may not be possible for all 1. Indeed, a pair
of right and left Lanczos vectors v,41 and w4 satisfy-
ing (10) exists if, and only if, 6, := w_ v, #0. If 6, = 0,
then the classical Lanczos process actually breaks down
due to division by 8, = 0 when trying to compute the co-
efficient o, in (9). Moreover, 6, # 0, but §, ~ 0, signals
a near-breakdown in the classical Lanczos process due to
division by a number close to zero. In recent years, reme-
dies for the possible breakdowns and near-breakdowns in
the classical Lanczos process have been developed. The
basic idea is to relax the vector-wise biorthogonality (10)
to a cluster-wise biorthognality whenever 6, =~ 0 and to
modify the classical Lanczos process accordingly. The re-
sulting computational procedure is called the look-ahead
Lanczos algorithm; see [11] and the references given there.
The look-ahead Lanczos algorithm is identical to the clas-
sical Lanczos process as long as only look-ahead steps of
length 1 occur. A true true look-ahead step of length 1
occurs if, and only if, 8, =~ 0. For those Lanczos iterations
corresponding to a true look-ahead step, the recursions (9)
are replaced by suitable block three-term recurrences. For
a detailed description of one particular implementation
of the look-ahead Lanczos algorithm, we refer the reader
to [11]. FORTRAN 77 codes for this algorithm are avail-
able as part of the software package QMRPACK [15].

B. Chotce of Iterates

Once a procedure for generating basis vectors {v, },>1
has been specified, suitable Krylov-subspace iterates z,

need to be selected. Let
V, = [vl (11)

V2 V,u]

be the matrix whose columns are just the first p basis
vectors. Then, by (5), (7), and (11), any possible p-th
iterate z, can be parametrized as follows:

yn € (12)

z, =20+ V,yu, where

Thus it only remains to select the free parameter vector
yu in (12).

Next, we note that the recurrences used to generate
the first p + 1 basis vectors vy, va, ..., v,y can always
be summarized compactly as follows:

AVH = V;L-f-l TN‘ M Z 1. (].3)

Here, T, is an (g + 1) x p matrix whose entries are the
recurrence coefficients. In the case of the Arnoldi process,
T, is a full upper Hessenberg matrix, which just reflects
the use of long recurrences. In the case of the classi-
cal Lanczos process, T, is a tridiagonal matrix, reflecting
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the three-term recurrences. For the look-ahead Lanczos
algorithm, T, is tridiagonal plus a few “bulges”.

Using (13) and the fact that ro = pv; for some scalar
p, we obtain the following representation for the residual
vector r, associated with any potential u-th iterate (12):

r,=b—-Az,
=rg— V;4+1 Tu Yu
1
— V“+1 (p e(l,ll‘f' ) _ T;t yu)

(14)

Here, egu“) is the first unit vector (in C**!). Obviously,
the goal for the choice of the free parameter vector y,
in (12) is to drive the residual vector r, to 0 as fast
as possible. The representation (14) of r, suggests two
strategies for the choice of y,,. The first is a Galerkin-type
approach. Here one deletes the last row of the (u+1) x p
matrix T, to obtain a square g x g matrix T&f ', and then
determines y, as the solution of

— peti)
=pe;’.

Note that, in view of (14), the choice (15) implies

T Yu (15)

— T
r, =— (e;t TH yﬂ) Vil

i.e., the p-th residual vector is a scalar multiple of v,4;.
The resulting Krylov-subspace methods based on the
choice (15) are the biconjugate gradient (BCG) algo-
rithm [17] if the Lanczos basis is used and the FOM algo-
rithm [20] if the Arnoldi basis is used.

However, there is a problem with the choice (15) since,
in general, the matrix T}’ cannot be guaranteed to be
nonsingular. In fact, if T’ happens to be singular, then
both BCG and FOM break down since their respective
iterates are not defined. Moreover, if Tﬁfj is close to sin-
gular, then the p-th residual r, may be large. Matrices

Tgf ) that are close to singular do indeed occur in practice,
and are the reason for the typical erratic convergence be-
havior of BCG.

The second strategy is to choose y, such that the Eu-
clidean norm of r,, is minimized. In the case of the Arnoldi
basis this is easy to do. Recall that the Arnoldi basis vec-
tors are orthonormal, and that the Euclidean norm is in-
variant under multiplications with orthonormal matrices.
Therefore, from (14), we obtain

Hrullg = ”VuH (/’e(lu-H) e yu) ”q

B PVZE 2 (16)
et - Tamd,

By (16), we simply need to choose y, as the solution of
the least-squares problem

1 .
pe‘lﬁ' ) = m

y €T

- Tuyp Y /’e(lw—“ - T, y”,) (17)

in order to guarantee that ||v,||, is minimal. The result-
ing algorithm is GMRES [21]. Note that the matrix T,
in (17) always has full column rank g and thus (17) always
has a unique solution z,.



C. Preconditioning

Krylov-subspace methods are hardly ever applied di-
rectly to the original linear system (1). Instead, they are
combined with preconditioning. A preconditioner for (1)
is a nonsingular matrix

M=M; M, (18)
of the same size as A such that M in some sense “ap-
proximates” A, while solving systems with M; and M,
is much “cheaper” than solving systems with A. In (18),
it is allowed that one of the factors is trivial, i.e., M; =1
or Mj. The Krylov-subspace method is then applied (at
least implicitly) to the preconditioned system

Al =V, (19)

where A’ = M7 AM;}, 2/ =Msz, and b’ = M7 ' b.

Standard preconditioning techniques include incom-
plete factorization techniques, where the matrices M; and
M, in (18) are lower, respectively upper, triangular and
result from an incomplete factorization of A, or SSOR,
where M; and M result from an additive triangular de-
composition of A. For a discussion of these standard pre-
conditioning techniques, we refer the reader to [3],[4],[20].

Recall that the drift-diffusion equations for device simu-
lation represent. a system of coupled PDE’s. For the linear
systems arising from systems of PDE’s, preconditioners
can also be motivated by reorderings of the equations.
Write

A A Aim

Asr Ao Ao
A = . R .

Am.l Amz Ammv

where Aj; € BV for all 7,7, and m and v denote the
number of PDE’s and grid points, respectively. Let

Dii Do Dim

D31 Do Doy
D= . .

Dml Dm? Dmm

where D;; = diag(Ay;).
P, such that

There is a permutation matrix,

An élz 1§1u
. T Ay Ay A,
A =PAP" = . . .
Aul Au? Au:/
where
(A11)ij  (Aq2)i (A1m)ig
B e e
(Aml)i] (Amz)m (Amm)ij
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Note that A is the matrix blocked by PDE, while A is
alternately blocked by grid point; that is, Ay; represents
the diagonal operator of the i-th PDE with the discrete
variables ordered in terms of the spatial grid, while A;;
represents the linearized coupling between the PDE’s at
the ij-th grid point. The matrix (PDPT)~! has m x m
matrices on its diagonal. The ABF preconditioner [5] is
then given by My = D and M; = I, and it is imple-
mented in terms of the D analog. Incomplete factoriza-
tions based on either the “natural” or ABF ordering are
alternatives [6].

In the following, we always assume that Az = b is
already the preconditioned system.

II1. LANCZ0S-BASED ITERATIVE SOLVERS

We now discuss Krylov-subspace methods based on the
Lanczos process. We already described one such method,
BCG, and mentioned its erratic convergence behavior.
The question arises if BCG can be stabilized in a way
similar to how GMRES avoids the potential breakdowns
of FOM. This can indeed be done, even though the result-
ing method no longer minimizes the residual norm. Again,
one uses the formula (14) for the residual r,, of any poten-
tial p-th iterate z,. In (14), V41 is now the matrix of
right Lanczos vectors, which are biorthogonal to the left
Lanczos vectors but not orthonormal among themselves,
and T, is the tridiagonal matrix of Lanczos recurrence
coefficients. Since V4 is no longer orthonormal, the
Euclidean norm of r, cannot be minimized cheaply, but
it can be quasi-minimized. This means that we choose
¥ such that the Euclidean norm of the bracketed term
on the right-hand side of (14) is minimized. Thus, y, is
chosen as the solution of the least-squares problem (17),
where T, now is the Lanczos tridiagonal matrix. The
resulting Krylov-subspace method is the quasi-minimal
residual (QMR) algorithm [13],[14].

Due to the quasi-minimization of the residual norm,
QMR effectively remedies the erratic convergence behav-
ior of BCG. Moreover, the potential breakdowns and near-
breakdowns in the underlying Lanczos process can be
avoided by using look-ahead; we note that FORTRAN
77 codes for QMR with look-ahead are included in QMR-
PACK [15]. The following numerical examples illustrate
these features of QMR.

Ezample 1. We consider a pn diode with a maximal
p doping of 10'° with a Gaussian junction to an n dop-
ing of 10'®. The diode was in low injection (0.2V). We
ran a simulation of the diode, using etther QMR or BCG
as the linear systems solver. In this case, BCG did not
converge to sufficient accuracy for some of the linear sys-
tems arising in the outer Newton iteration, while QMR
always converged. In Figure 1, we show the relative resid-
ual norms for QMR (solid line) and BCG (dotted line) for
one of the linear systems where BCG failed.

Ezample 2. Here, we consider the pn diode again, but
now in high injection (2V). In Figure 2, we show the re-
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Fig. 1. QMR and BCG for simulation of pn diode; Example 1

sults of a QMR run with look-ahead (solid line) and with-
out (dotted line). In this case, convergence is delayed
when look-ahead is turned off, even though the under-
lying Lanczos algorithm encountered only a mild near-
breakdown.

A. Transpose-Free Methods

Both the BCG and the QMR algorithm involve prod-
ucts with A and AT. Sonneveld [23] was the first to
observe that the products with AT in BCG can be elimi-
nated, although this is done at the expense of computing
different iterates. More precisely, his CGS algorithm [23]

generates iterates zgfs that are related to the BCG iter-
ates zBCG as follows:
b— A s = (4,(A))" (b~ Az),

20
b~ AzECC = ¢,(A) (b Az). 0

Here, ¢, is the p-th BCG polynomial. Unfortunately,
the squaring of ¢, in (20) implies that both the good
and the bad properties of BCG are squared, and thus the
convergence behavior of CGS can be even more erratic
than that of BCG.

It is possible to derive QMR-type algorithms that—just
like CGS—avoid the use of products with the transpose
AT but whose convergence is less erratic. The most effi-
cient of these algorithms is TFQMR [9].

Another approach to smoothing the convergence behav-
ior of CGS is used in the Bi-CGSTAB algorithm [24]. In-
stead of squaring ¢,, it is based on a product of ¢, with
a polynomial resulting from steepest descent steps.

13

1 X L
0 40

" L s L
60 80 100 120
Number of iterations

Fig. 2. QMR with and without look-ahead for simulation of pn
diode; Example 2

IV. THE BLoCK-QMR METHOD FOR MULTIPLE
RiGHT-HAND SIDES

Some numerical simulations involve the solution of mul-
tiple linear systems

A2V =bl), j=12,... m,, (1)

with the same matrix A, but different right-hand sides.
For example, this situation arises when bordered systems
are solved by means of repeated solves of systems with
the unbordered subsystem. In (21), A is a fixed, nonsin-
gular, in general complex non-Hermitian, N x N matrix,
and bU) € CV. Assuming that all right-hand sides bU/),
j=1,2,...,my, are available simultaneously—as it 1s the
case for bordered systems—solving the mg systems (21) is
equivalent to solving the block system of linear equations

AZ =B, where B=[b®) b bimo)] . (22)

The solution vectors of (21) are then just the columns of
the solution Z = [z(1)  z(?) z{mo)] of (22).

Instead of applying an iterative method, such as QMR,
to each of the my systems (21) individually, it is po-
tentially more efficient to apply a suitable block version
of the iterative method to the block system (22). For
Krylov-subspace methods, the advantage of block itera-
tions over individual runs can be formulated precisely; see,
e.g.,[12]. Essentially, the argument is that a block Krylov-
subspace method selects its iterates from a sequence of
subspaces that are higher dimensional than the subspaces
from which the iterates of the individual runs are chosen,
even though generating the “block” subspaces and all mg
sequences of “individual” subspaces requires roughly the
same computational work.

The block-QMR method [12] is an extension of QMR for
systems with single right-hand sides to block systems (22).
Let Zg € CV*™0 he an arbitrary initial guess for the ex-
act solution A™!B of (22), and set Ro := B — A Zo.



The block-QMR, method constructs approximate solu-
tions of (22) that are of the form
Z = |20 2 A7l e TV > 1, (23)

where ZEP € z%ﬂ + Ku(A,Ro) for each j = 1,2,... ,myq.
Here, foreach p=1,2,...,

Ku(A,Rg) := colspan, [Ro ARy -~ AV1Rg] (24)

is the p-th block Krylov subspace (generated by A and
Ro). In (24), the following notation is used. For any
matrix M and any integer 0 < p < rank M, we denote
by colspan,, [M] the p-dimensional subspace spanned by
the first p linearly independent columns of M that one
encounters when scanning the columns from left to right
for linear independence.

The block-QMR method uses a recently developed
Lanczos-type process [1] that produces two sequences
of biorthogonal basis vectors for K (A, Ry) and the -
th block Krylov subspace (generated by AT and L)
K (AT, L); here, L € CN %m0 g an arbitrarily chosen ma-
trix, different from the zero matrix. More precisely, after
i steps, the Lanczos-type process has produced right and
left Lanczos vectors

vi,ve,...,v, and wi,wo,. .. (25)

y Wi
respectively, such that

Vi } = Ku(A, Ryp),

,wi} = K (AT L),

w;ka =0 forall i£k=1,2,... 4.

span{ vi,va,. ..

span{ wi, wao, ...

An important feature of the Lanczos-type process is that
the Lanczos vectors (25) are generated by means of re-
currences of limited length, namely (2mg + 1)-term recur-
rences. For the right Lanczos vectors, these recurrences
can be summarized in compact form as follows:

+ {7dl

X

AV, =V, T, > 1 (26)
Here, V, := [vl Vu]’ T, is an n x pu banded
matrix with upper and lower bandwidth mg containing
the recurrence coefficients, and Vﬂ[ is a matrix with
mostly zero or very small entries that accounts for “de-
flation” of linearly or almost linearly dependent columns
in the block Krylov sequence Ry, ARy, ..., AV IRy
in (24). The recurrences (26) are complemented by “ini-

tial” recurrences

Va

Vo, p+ VI =R, (27)

that are used to biorthogonalize the columns of the “right”
initial block Ry against the columns of the “left” initial
block L. In (27), m; < rankRy < mygp, and p is an up-
per triangular m; x mg matrix. The left Lanczos vec-
tors in (25) are generated by means of recurrences similar
to (26) and (27).
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In the block-QMR method, the right Lanczos vectors
are used to parametrize any possible iterate (23) as fol-
lows:

2,=Zy+V,Y,, where Y,gCH*mo, "(28)
By (26) and (27), the block residual associated with (28)
is given by

R,=Ro-V,T,Z-VIZ

_ P d
DR

Following the QMR philosophy and assuming that the
columns v; of the matrix V,, are all normalized to have
Euclidean length 1, the free parameter matrix Y, in (28)
1s determined so that the Euclidean norm of the bracketed
term in (29) is minimized. Thus, in (28), one chooses Y,
as the solution of the matrix least-squares problem

RS R

In the block-QMR method, the matrix least-squares prob-
lem (30) is solved by means of standard techniques based
on a QR decomposition of T,. In particular, this allows
to obtain the solution Y, by updating the solution Y,
from the previous step. Moreover, the associate update
Z,,_1 — Z, for the actual iterates (28) turns out to be a
simple rank-one update. For a description of this update
procedure and for further implementation details, we refer
the reader to [12].

(29)

min
Y e X mo

V. (I,V) CONTINUATION

We now return to the coupled systems of PDE’s that
arise 11 device simulation. In this section, we discuss con-
tinuation techniques for computing the (7, V') behavior of
semiconductor devices [7].

Recall that, once discretized, the DD or EB/ET equa-
tions become a nonlinear system

G(z) = 0. (31)

Consider parametrizing the (I, V) curves by arc-length s
so that z — z(s). Then differentiating (31) with respect
to s we get

oG
av
T V(s)? = 1.

G'i(s) + w0 V

(5) =0,

[(s)

Next, we replace the arc-length condition by one of the
following pseudo-arclength conditions:

Ny =0L(I - L)+ (2 —0)V;(V —V;) — Ac;,
No = (I —L;)* +(V =V;)? = (Adj)?



For either choice of N, the linearized matrices are of the
Gl

form
A= ,:(azN*)T } )

where G’ € R™*" is the usual DD or EB/ET Jacobian,
and v G, 8.N, € B™ Note that A is just the usual
Jacobian, G’, bordered by a single row and column. For
Agj < 1, the matrix A is nonsingular, even at simple
limit points where G’ itself is singular.

There are applications (such as computing CMOS
latchup trigger and holding points) where limit points
need to be found. In this case, bisection or more sophisti-
cated algorithms are applied to find where the curve turns
back on itself, necessitating numerous solves where G’ is
ill-conditioned or effectively singular. (/, V') continuation
has proven to be a highly effective algorithm for such ap-
plications.

At bifurcations or for manifold exploration, G’ must be
normalized by bordering it with two rows and columns.
There are applications of finding fold lines in a manifold
for which multivariate continuation is a natural and effi-
cacious approach.

oG
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VI. INCORPORATING CIRCUIT ELEMENTS INTO
DEVICE SIMULATION MODELS

Bordered linear systems also arise when device simula-
tion models are combined with circuit elements.

A. Circuit Elements

Lumped circuit elements can be treated via Kirchhoff’s
current and voltage laws

Asi=0€R™,
v=ATueR!

(where A, € R™*! u, v, and i are the augmented inci-
dence matrix, node voltages, branch voltages, and branch
currents, respectively) and global constitutive relations

KGiv)=i- (%q(v) +f(v)) =0€R"

We refer the reader to [25] for a detailed discussion of
these equations.

For voltage-controlled, lumped elements these reduce to
the (linearized) nodal equations involving A K, AT where
A is the incidence matrix.

B. Incorporating Circuit Elements

Consider a static device model with coupled lumped el-
ements. The matrices from the linearizations are bordered
matrices of the form

G’ c
A= L-T AK, AT] ’
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where G’ € RV*¥ s the usual DD or EB/ET Jacobian,
¢, v € RVX™ represent the coupling between the device
and circuit equations at contacts, and AK, AT are the
nodal network equations. We assume m < N, and so G/
is the dominating part of A.

We remark that continuation can be applied to such
problems as well, introducing m + 1 (or even m + 2) row
and column bordering of G'.

C. Block Flimination

Consider bordered systems

A oap = by

a.:fl anso - bg ’
where Aj; € CVN*N | ag € C"*™ and m < N. For
the case that Aj; is nonsingular, one popular approach

to solving (32) is to first perform one step of block elimi-
nation with Ayy. This results in the equivalent system

| = b asin)

—aj A1—11 by
Clearly, this approach requires the solution of m + 1 lin-
ear systems with the same matrix Aj; to obtain the m
columns of Al'l1 a2 and the vector A1_11 b;.
When direct sparse methods are used, one can solve
these m + 1 systems as follows:

(1) Factor PA,; = LU;

(32)

Ay
0

az
T -1
agy — Ay A11 ain

(2) Do m+1 backsolves to compute A}}" a2 and A} by.

For limit-point computations with continuation, Aj; is
nearly singular, and then more complicated techniques
like deflated elimination or working-precision iterative re-
finement may be required. In this case, more than m + 1
backsolves are needed.

When iterative methods are used, the m+ 1 solves with
A1y can be summarized as a block system

A Z= [312 bl]

and the block-QMR, method can be employed.

D. Bordering Preconditioners

Another approach to solving (32), which does not re-
quire Aj; to be nonsingular, is to simply apply a Krylov-
subspace methods to the bordered system (32). The bor-
dered structure can still be used in the construction of
suitable preconditioners for (32).

Given any preconditioner M; for A7, we want to con-
struct a preconditioner M for the bordered matrix A
in (32), Since Mj; is a preconditioner, M;; = L - R,
where systems with L and R can be solved easily. We
then border L and R by setting

L

R r
M1=[1T

2] and Mg:[o d]’ (33)



and use M = M; - M, as a preconditioner for A. In (33),
we choose 1, r, ¢, and d such that RT1 = ay;, Lr = a9,
and c¢d = azy — 1T r. Then the preconditioner
_ [Mn 312] .

axp]’

M=M
' ar2F1

"M,
matches A in its bordered part.

VII. CoNcLUDING REMARKS

Semiconductor device modeling remains an important
tool for exploring novel structures and to estimate the im-
pact of technology (i.e., process) changes. As line widths
shrink, interactions between devices or interconnects be-
come relevant; simulation of multiple devices coupled by
circuit elements is important, and it often requires three-
dimensional modeling. Moreover, device models including
energy transport are needed for small device geometries
or more exotic structures; these models involve more non-
linear, coupled PDEs than the traditional drift-diffusion
equations. For two-dimensional drift-diffusion simulators
of individual devices, sparse, direct factorization algo-
rithms were adequate to deal with the linear systems
arising from the solution of the nonlinear systems. How-
ever, in the more complicated simulation environment de-
scribed here, iterative methods are essential. Our chal-
lenge has been to supply iterative algorithms that ap-
proach the same level of robustness as the direct schemes.

An important component of semiconductor process sim-
ulation are models for impurity diffusion, which involve
multiple species and thereby many coupled advection-
diffusion equations. The same iterative methods are ap-
plicable to this set of problems as well.

In recent years, there have been many advances in the
area of Krylov-subspace methods, and these algorithms
have become standard tools for the iterative solution of
large, sparse linear systems. Research activities are now
beginning to shift away from basic Krylov-subspace meth-
ods to the development of better and more robust pre-
conditioners for nonsymmetric systems. For symmetric
positive definite systems resulting from scalar self-adjoint
PDE’s, multi-level preconditioners, such as hierarchical
bases, have proven to be very efficient; see, e.g., [27],[26].
The development of similarly efficient multi-level precon-
ditioners for the nonsymrmetric linear systems arising from
non-selfadjoint PDE’s or even coupled systems of PDE’s,
such as drift-diffusion equations, has hardly begun.
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