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Abst~uct -  T h e  computational cost of many simula- 
tions is dominated by the solution of large, sparse sys- 
tems of linear equations. Krylov-subspace methods, 
especially when combined with suitable precondition- 
ing, a re  powerful algorithms for t he  iterative solution 
of such linear systems. One of the features of Krylov- 
subspace methods is that the matrix of t he  linear sys- 
tem is only used in t h e  form of matrix-vector prod- 
ucts, and  thus  sparsity is naturally exploited. I n  re- 
cent years, there have been many advances in  Krylov- 
subspace methods for the solution of large, sparse, 
nonsymmetric linear systems. I n  this paper, we sur- 
vey some of these recent advances, especially in  the 
area of Lanczos-based methods. We also discuss the  
use of state-of-the-art Krylov-subsp,ace methods in  de- 
vice simulation. 

I .  INTRODUCTION 

The computational cost of many simulations is domi- 
nated by the solution of systems of linear equations, 

tron and hole current densities. They are defined as 

J n  = -q  p n  n Vlc, -k DnVn,  
(3) 

J ,  = - q ~ p P V * - q ~ D P V P 1  

where p n  and p, are the electron and hole mobilities, and 
Dn and D, are the electron and hole diffusion coefficients. 
Energy balance (EB) or transport (ET) modeling of semi- 
conductor structures leads to PDE’s that are similar in 
mathematical character to (2)-(3); see, e.g., [19]. 

We now focus on the static problem and assume 
a n / &  = a p / a t  = 0. In this case, the PDE’s (2) (with 
suitable boundary conditions) and (3) represent a cou- 
pled syst,em of boundary-value problems for the functions 
$(x), n(x) ,  and p ( x ) ,  where x E R and R C Rd,  d = 2 
or cl = 3, is the two- or three-dimensional device struc- 
ture. To solve (2)-(3) numerically, one first chooses an 
appropriate, in general irregular grid for R ,  and then dis- 
cretizes the system of PDE’s using a finite-element or 
finite-volume scheme. The result is a large, sparse sys- 
tem of nonlinear equations, 

where A is a large, but sparse, nonsingular matrix. Typ- 
ically, these large, sparse linear systems arise from dis- 
cretization and possibly linearization of part,ial differential 
equations (PDE’s) that  model the process to be simulated. 

As an example, consider the classical drift-diffusion 
equations [19], [22] for the modeling; of semiconductor 
structures. The drift-diffusion equations are a coupled 
system of PDE’s for the electrostatic potential $(x, t ) ,  the 
electron concentration n(x,  t ) ,  and the hole concentration 
p(x, t ) .  The equations can be written as follows: 

where E ,  q ,  C, Rn, and R, are the electron charge, the 
dielectric permittivity, the net impurity (doping) concen- 
t,ration, and the net electron and hole recombination rates, 
respectively. Furthermore, in (2) ,  J ,  and J ,  are the elec- 
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Here, v is the number of grid points, and +, n, p are 
vectors of length v whose components are approximations 
of the function values lc,(x), n(x) ,  p(x ) ,  respectively, at 
the grid points. The nonlinear system (4) is solved by 
a Newt,on-type method. Computing the Newton search 
direction requires the solution of a large, sparse linear 
system (l), where A = G’ is the Jacobian of G ,  at each 
Newton iteration. For the drift-diffusion equations, these 
Jacobians are nonsymmetric. 

For linear systems of small size, the standard approach 
is t,o use direct methods, such as Gaussian elimination. 
These algorithms obtain the solution of (1) based on a 
factorization of the coefficient matrix A. Direct methods 
have been adapted with great success to  large, sparse lin- 
ear systems; see, e.g., [8], [18] and the references therein. 
In fact, sparse direct methods are now widely used for the 
solution of large, sparse linear systems, especially for two- 
dimensional simulations. However, for the large, sparse 
linear systems arising from PDE’s for three-dimensional 
simulations, direct solution methods have excessive stor- 
age requirements, and it becomes prohibitive to use them. 
For three-dimensional modeling, iterative methods are 



usually far more efficient, and often the only way to  tackle 
the large, sparse linear systems arising in such simula- 
tions. 

Krylov-subspace methods, especially when combined 
with suitable preconditioning, are powerful algorithms for 
the iterative solution of large, sparse linear systems (1). 
One of the features of Krylov-subspace methods is that 
they use the matrix A of (1) only in the form of matrix- 
vector products, and thus they naturally exploit the spar- 
sity of the linear system. 

In recent years, there have been many advances in 
Krylov-subspace methods for the solution of large, sparse, 
nonsymmetric linear systems; see, e.g., (101, PO] and the 
references given therein. In this paper, we survey some of 
these recent advances, especially in the area of Lanczos- 
based Krylov-subspace methods. We discuss the design 
of robust and efficient iterations that remedy the erratic 
convergence behavior of earlier algorithms, show how pos- 
sible breakdowns in the underlying Lanczos process can 
be avoided, and describe a block method for the solution 
of systems with multiple right-hand sides. We also discuss 
the use of state-of-the-art Lanczos-based Krylov-subspace 
methods in device simulation. 

11. KRYLOV-SUBSPACE METHODS 

We consider linear systems (1) where A E C N x N  
is a nonsingular, in general non-Hermitian matrix and 
b E CN . An iterative scheme for the solution of (1) is 
called a Krylov-subspace method if, for any initial guess 
zo E CN, it produces a sequence of approximations to 
A-’ b of the form 

(5) 
Zl,ZZ,.‘.,Zfi,.‘., 

where z p  E zo + K,,(A,ro) for all y .  

Here, ro = b - A zo is the residual vector associated with 
the initial guess Z O ,  and 

K,(A, ro) := span {ro, A ro, . . . , AIL-’ ro} (6) 

is the p-th Krylov subspace of C”’ (induced by A and ro). 
The key feature of Krylov subspaces is that already for 

p << N, K,(A, ro) often yields very good approximations 
z, M A-’ b even though the dimension p of K,(A, ro) is 
much smaller than the order N of the matrix A. This is 
especially so when A is a suitably preconditioned version 
of the coefficient matrix of the linear system to be solved. 

While Krylov subspaces have good approximation prop- 
erties, the power basis A3-I ro, j = 1 , 2 ,  . . . , 1-1, used in the 
definition (6) is numerically unstable. A second issue is 
the choice of the actual iterates z p .  In fact, any viable 
Krylov-subspace method has two main ingredients: 

(i) A procedure to generate suitable basis vectors for 

(ii) A procedure to  generate iterates zlL 

and (ii). 

ro ) ;  

In the next two subsections, we discuss the choice of (i) 

A .  Basts Vectors 

The goal is to compute a sequence of vectors { v ~ ~ } ~ L ~  
such that 

span{vl,vZ,. . . ,v,} = IC,(A,ro) for all p 2 1. (7) 

There are two distinctive approaches to this task. The 
first one is the Arnoldi process [a]. It produces numer- 
ically “optimal” basis vectors in t,he sense that the vIL’s 
are orthonormal: 

However, for general non-Hermitian matrices A ,  this op- 
timality comes at a rather heftmy price. Indeed, given the 
vectors V I ,  v2, . . . , vI,, the construction of the next vec- 
tor vIL++l is only possible by means of a “long” recurrence 
that involves all previous vectors. More precisely, vp+l is 
computed via a recurrence of t,he form 

As a result, all basis vectors have to  be stored, and the 
work per p-th itemtion grows linea.rly with y.  The long 
recurrences truncate to  short, recurrences oiily for Her- 
mitian matrices A and for some very special classes of 
non-Hermitian matrices; see [lo]. 

A second approa,ch is the La,iiczos process [16]. It uses 
“short”, namely, in the generic case, three-term recur- 
rences t,o construct the vectors { ~ , ~ } , ~ 2 1 ,  but it gives up 
optima,lity of the basis. Moreover, in  cont,rast t,o t,lie 
Arnoldi process, which only involves ma.t.rix-vect,or prod- 
uct,s wit8h A ,  t,he Lanczos process involves mult,iplications 
wit.11 bot,h A and it,s t,ranspose A.1. In fa.ct,. the Lanczos 
process generat,es two sequences of vect.ors 

The first sequence, the right Laiiczos uectors, again sat- 
isfy ( 7 ) ,  while the leff Laizcsos vectors { W , ~ } , ~ ? I  span a 
second sequence of Krylov subspaces: 

Here, 1 E CN, 1 # 0,  is an  arbitrary vector, usually chosen 
as a random vector. In the generic case, the sequences (8) 
are generated by means of three-term recurrences of the 
form 

10 



Furthermore, the coefficients a,, Pp,  P,,, yp+l ,  and ?,+I 

in (9) are chosen such that,  in the generic ca.se, the right 
a.nd left Lanczos vectors are baorthogonal: 

T wj v,,+1 = w;+, vj = o for all j = 1 , 2 , .  . . , p .  (10) 

However, it turns out that enforcing the biorthogonality 
condition (10) may not be possible for all p. Indeed, a. pair 
of right aad left Lanczos vectors v,+; and w,,+1 satisfy- 
ing (10) exists if, and only if, 6,‘ := w,: v,, # 0. If 6, = 0,  
then the classical Lanczos process ac1,ually breaks down 
due to  division by 6,, = 0 when t,rying to  compute the co- 
efficient ar in (9). Moreover, 6, # 0, but b,, x 0,  signals 
a n,ear-brenkdown in the classical La.nczos process due t,o 
division by a number close to zero. In recent years, reme- 
dies for the possible breakdowns and 1iea.r-breakdowns in 
the classica.1 La.nczos process have been developed. The 
basic idea is to relax the vector-wise hiorthogonality (10) 
to a cluster-wise Iiiorthognality whenever 6,, M 0 a.nd to 
modify the classical Lanczos process a,ccordingly. The re- 
sulting computational procedure is callled t,he look-ahead 
Lanczos algorath.m,; see [ l l ]  a.nd the references given there. 
The look-ahead Lanczos algorithm is identical t,o the clas- 
sical Lanczos process as long a.s only look-a.head steps of 
length 1 occur. A true true look-a1iea.d step of length 1 
occurs if, and only if, 6,, x 0. For t,liose Laiiczos itera.tions 
corresponding to a. true look-ahead step, the recursions (9) 
are replaced by suitsable block three-t,eriii recurrences. For 
a. detailed description of one particular implementation 
of t,lie look-a.liead Laiiczos algorithm, vve refer t,he reader 
to [ll]. FORTR.AN 77 codes for this algorithm a.re avail- 
able as part of t,he software packa.ge QMRPAC:I< [15]. 

B. Chozce o f  Iterates 

Once a procedure for generating basis vectors {v,,],,~1 

has been specified, suitable Krylov-suhspace iterates z,, 
need to be selected. Let, 

v,, = [VI v:! . . . V J  (11) 

he t#lie inat,rix whose coluiniis a.re just t,lie first) p basis 
vect,ors. Then, by (5), ( T ) ,  and ( l l ) ,  any possible /r-t,h 
it,era.te z,, caa  be parametrized as follows: 

z , ~  = zo + V,, y,,, where ya E CA‘. (12) 

Thus i t  only remains to select the free pa.ra.ineter vector 
y, in (12). 

Next, we not,e that, tlie recurrences used t80 generate 
the first p -t 1 basis vect80rs V I ,  v?, . . . , vlC+l can always 
be summa.rized compact,ly as follows: 

A Vp = v/i+~ I“ 2 1. (13) 

Here, T,, is a n  ( p  + 1) x p ma.tris whose entries are t,he 
recurrence coefficients. In the ca.se of t,he Arnoldi process, 
T,, is a full upper Hessenberg matrix, which just reflects 
the use of long recurrences. In the ci3.se of t,he classi- 
cal Lanczos process, T,, is a t,ridia.gonal matrix, reflectring 

the three-term recurrences. For tlie look-ahead Lanczos 
algorithm, T, is t,ridiagona.l plus a few “bulges”. 

IJsing (13) and the fact t1ia.t ro = pv1 for some scalar 
p ,  we obtain the following representation for the residual 
vect80r r,( associated wit,li any pot,ential p-th iterate (12): 

r,, = b - A z/, 

(14) = 1’0 - v,+1 T,, Y,1 

= V ~ + I  (pej‘”” - T,, Y,> 

Here, e(l”+” is the first unit vector (in ). Obviously, 
the god for the choice of t,he free parameter vector yr 
in (12) is t80 drive the residual vector rAt to 0 as fast 
as possible. The represent.a.t,ion (14) of rr suggests two 
stmtegies for t,he choice of y,,. The first, is a Gaderkin-type 
a.pproa.ch. Here one delet,es the la.st row of t81ie ( p  + 1) x p 
nmtrix T,, to obtain a square ,LL x 1-1 inatrix TI,”’, and then 
det,ermines y,, as t,lie solution of 

Ti:) y,, = p e ? ’ .  (15) 
Notme that,  in view of (14), the clioic,e (15) implies 

1 ’ ,L  = - (e; T,l Y,) v,1+1, 

i.e., t,he p t h  residual vect,or is a. sca.lar multiple of vp+l. 

The resulting Mrylov-subspxe methods h s e d  on the 
choice ( 15) a.re the bicoiijuga.te gradient (BCG) a.lgo- 
rit,lim [17] if the Lmczos Imsis is used a i d  the FOM algo- 
rit,lim [20] if t,he Arnoldi h s i s  is used. 

However, t,liere is a problem wit,h the choice (15) since, 
in general, the matrix ~j:’ ca,nnot, be guaranteed to be 
nonsingular. In fact,, if Ti:’ happens to be singula.r, then 
hot,h BCG and FOM break down since t,lieir respective 
it,erates a.re not defined. Moreover, if TjB’ is close to sin- 
gular, then t,he /i-t,h residual r,, may he large. Matrices 
Ti:’ that, are close to singuhr do indeed occur in pra.ctice, 
aad are t,lie reason for t.he t,ypical erra.tic convergence be- 
havior of BCG. 

The second strat,egy is t,o choose y,, such t,ha.t the Eu- 
clidean norm of I-,, is minimized. In tlie ca.se of t.lie Arnoldi 
basis this is ea.sy to do. R.eca.11 tha.t, t,lie Arnoldi ba.sis vec- 
tors are orthonormal, and tjliat8 t,he Euclidean norm is in- 
va.riant under iiiult,iplica.t,ioiis wit,li ort.lionorma.1 mat,rices. 
Therefore, from (14),  we ohtrain 

By ( l ( i ) ,  we simply need t,o choose y,, as the solution of 
t,he lea.st,-sclua.res problem 

in order to guarantee that 11r,1112 is minimal. The result- 
ing algorithm is GMRES [all.  Note that the matrix T,, 
in (17) always has full column rank p and thus (17) always 
has a unique solution z,,. 



C. Preconditioning 

Krylov-subspace methods are hardly ever applied di- 
rectly to the original linear system (1). Instead, they are 
combined with preconditioning. A preconditioner for (1) 
is a nonsingular matrix 

M = M I  . M p  (18) 

of the same size as A such that M in some sense “ap- 
proximates” A,  while solving systems with MI and MP 
is much “cheaper” than solving systems with A. In (18), 
it is allowed that one of the factors is trivial, i.e., M1 = I 
or Mp. The IG-ylov-subspace method is ttlien applied (at 
least implicitly) to the preconditioned system 

A‘z‘ = b’, (19) 

where A’ = MC1 A Mi1,  z’ = Mp z, and b’ = ML1 b. 
Standard preconditioning techniques include incom- 

plete factorization techniques, where the matrices MI and 
M:! in (18) are lower, respectively upper, triangular and 
result from an incomplete factorization of A,  or SSOR, 
where MI and M2 result from an additive triangular de- 
composition of A.  For a discussion of these standard pre- 
conditioning techniques, we refer the reader to [3], [4], PO]. 

Recall that  the drift-diffusion equations for device simu- 
lat,ion represent. a system of coupled PDE’s. For the linear 
systems arising from systems of PDE’s, preconditioners 
can also be inotivated by reorderings of the equations. 
Write 

where Aij E B’”” for a.11 i ,  j ,  and 77) and I /  denote the 
number of PDE’s and grid points, respectively. Let 

D l m  1 

1 D , I  D,,z . . 

where Dij = diag(Aij). There is a. permutation matrix, 
P,  such that 

1 A”1 A ” 2  

where 

~ 

12 

111. LANCZOS-BASED ITERATIVE SOLVERS 

Note that A is the matrix blocked by PDE, while A is 
alternately blocked by grid point; that  is, Aii represents 
the diagonal operator of the i-th PDE with the discrete 
variables ordered in terms of the spatial grid, while A,j 
represents the linearized coupling between the PDE’s at 
the ij-th grid point. The matrix (PDPT)-l has m x m 
matrices on its diagonal. The ABF preconditioner [5] is 
then given by Mz = D and M1 = I, and it is imple- 
mented in terms of the D analog. Incomplete factoriza- 
tions based on either the “natural” or ABF ordering are 
alternatives [GI. 

In the following, we always assume that A z  = b is 
already the preconditioned system. 

We now discuss Krylov-subspace methods based on the 
La.nczos process. We a.lready described one such method, 
BCG, a.nd mentioned its erratic convergence behavior. 
The question arises if BCG can be stabilized in a way 
simi1a.r to how GMRES a,voids the potential breakdowns 
of FOM. This can indeed be done, even though the result- 
ing method no longer minimizes the residual norm. Again, 
one uses the formula (14) for the residual r p  of any poten- 
tial p-th iterate z/ , .  In (14), V,,+1 is now the matrix of 
right Lanczos vectors, which are biorthogonal to the left 
Lanczos vectors but not orthonormal among themselves, 
and T,, is the tridiagonal matrix of Lanczos recurrence 
coefficients. Since Vp+l is no longer orthonormal, the 
Euclidean norm of rp cannot be minimized cheaply, but 
it can be quasi-minimized. This means that we choose 
y p  such that the Euclidean norm of the bracketed term 
on the right-hand side of (14) is minimized. Thus, y p  is 
chosen as the solution of t,he least-squares problem (17), 
where T,, now is the La.nczos t,ridiagonal matrix. The 
resulting Krylov-subspace method is the quasi-minimal 
residual (QMR) algorithm [13], [14]. 

Due to the quasi-minimization of the residual norm, 
QMR effectively remedies the erratic convergence behav- 
ior of BCG. Moreover, the potential breakdowns and near- 
brea.kdowns in the underlying Lanczos process can be 
avoided by using look-a,head; we note that FORTRAN 
77 codes for QMR with lookahead are included in QMR- 
PACK [15]. The following numerical examples illustrate 
these features of QMR. 

We consider a p n  diode with a maximal 
p doping of with a. Gaussian junction to  an n dop- 
ing of The diode was in low injecttion (0.2V). We 
ran a. simulation of the diode, using eit,her QMR or BCG 
as the linear systems solver. In this case, BCG did not 
converge to sufficient accuracy for some of the linear sys- 
tems arising in the outer Newton iteration, while QMR 
dways converged. In Figure 1, we show the relative resid- 
ual norms for QMR (solid line) and BCG (dot,ted line) for 
one of the linear systems where BCG failed. 

Here, we consider the pn, diode again, but 
now in high injection (2V). In Figure 2 ,  we show the re- 

Example 1 .  

Example 2, 
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Fig. 1.  QMR and BCG for simulation of pin diode; Esample 1 

sults of a QMR run with look-ahead (solid line) and with- 
out (dotted line). In this case, convergence is delayed 
when look-ahead is turned off, even though the under- 
lying Lanczos algorithm encountered only a mild near- 
breakdown. 

A. Transpose-Free Methods 

Both the BCG and the QMR algorithm involve prod- 
ucts with A and AT. Sonneveld [23 ]  was the first to 
observe that the products with AT in BCG can be elimi- 
nated, although this is done a t  the expense of computing 
different iterates. More precisely, his CGS algorithm [23] 
generates iterates 2::’ that are related to  the BCG iter- 
ates zFCG as foIIows: 

b - A 2::’ = (d,(A))2 (b -- Azo) , 
b - AzECG = $/‘(A) (b - Azo) .  

(20) 

Here, dcL is the p-th BCG polynomial. Unfortunately, 
the squaring of 4, in (20) implies that both the good 
and the bad properties of BCG are squared, and thus the 
convergence behavior of CGS can be even more erratic 
than that of BCG. 

I t  is possible to derive QMR-type algorithms that-just 
like CGS-avoid the use of products with the transpose 
AT, but whose convergence is less erratic. The most effi- 
cient of these algorithms is TFQMR [9:1. 

Another approach to  smoothing the convergence behav- 
ior of CGS is used in the Bi-CGSTAB algorithm [24]. In- 
stead of squaring I),, i t  is based on a product of $, with 
a polynomial resulting from steepest descent steps. 

Fig. 2. 
diode; Example 2 

QMR wit,h and without look-ahead for simulation of p n  

IV. THE BLOCK-QMR METHOD FOR MULTIPLE 
RIGHT-HAND SIDES 

Some numerical simulations involve the solution of mul- 
tiple linear systems 

wit,h the sa.nie matrix A ,  but, different right-ha.nd sides. 
For esa.mple, t,liis sit.uat,ion a.rises when bordered systems 
a.re solved by mea.iis of repea,t,ed solves of syst,eins with 
the unbordered subsyst,em. In (21),  A is a, fixed, nonsin- 
gular, in genera.1 complex non-Hermitian, N x N matrix, 
and b(j) E CN. Assuming that a.11 right-hand sides b(j), 
j = 1 .2 , .  . . , 7 1 7 0 ,  are availablesimultaneously-as it is the 
case for bordered systems-solving the m o  systems (21) is 
equivalent to  solving the block system of linear equations 

A 2  = B, where B = [b(l, ht2) . . . b(”’o)] . ( 2 2 )  

The solution vectors of (21) are then just, t,he coluinns of 
the solution z = [z(’) z(’) . . . z ( ’ ” ~ ) ]  of (‘22). 

Inst,ea.d of a.pplying a.n itera.t,ive met,hod, such as QMR, 
to ea.ch of the na~ systems (21)  individua,lly, it is po- 
teiit8ially more efficient to  a.pply a. suitable block version 
of t,he iterative method to  the block system ( 2 2 ) .  For 
Krylov-subspace methods, the advantage of block itera- 
tions over individual runs can be forinuhted precisely; see, 
e.g., [12]. Essentially, the argument is that a block Krylov- 
subspace method select,s its iterates from a. sequence of 
subspaces that are higher dimensional tha.n the subspaces 
from which the itera.tes of the individual runs are chosen, 
even though genera.ting t,he “block” subspaces and all nzo 
sequences of “individual” subspaces requires roughly t,he 
mine comput,a.tional work. 

The block-QMR method [la] is a.n exteiisioii of QMR for 
systems with single right,-ha.nd sides t,o block systems (22) .  
Let 2 0  E CNxmo be an  a,rbitra.ry initial guess for the ex- 
act solution A-lB of (E), and set Ro := B - AZO.  

1 :3 



The block-QMR inethod const,ructs approxiinat,e solu- 
t,ioiis of (22)  that are of t,lie form 

where zi!) E z f )  + K,(A,Ro) for each j = 1 , 2 , .  . . , m o .  
Here, for each p = 1 , 2 , .  . . , 

K,(A,Ro) := colspan,, [Ro ARo . . .  AN-’RI,] (24) 

is tlie p-th block Ir‘rylozi subspace (generated by A and 
Ro). In (24) ,  the following notation is used. For a.ny 
matrix M and any integer 0 < 11 5 r ankM,  we denote 
hy colspan,, [MI tlie p-dimensional subspace s p n n e d  by 
t>he first p linearly independent columns of M t1ia.t one 
encounters when sca.nning the coliiniiis froin left to  right 
for linear independence. 

The block-QMR inethod uses a. recently developed 
La.nczos-type process [I] that produces t8wo sequences 
of biorthogond ba.sis vectors for K,,(A, Ro) a,ncl the ,U- 

t h  block Krylov subspa.ce (genera.tec1 by AT a.nd L )  
K,,(AT, L); here, L E CNx” is an arbit,rarily chosen ma- 
trix, different from the zero nia.trix. More precisely, a,fter 
p steps, the Lanczos-type process has produced right mid 
l e f t  Lancros vectors 

v1,v2,.  . . ,v i& and wl ,w? ,  . . . ,w, ,  (25) 

respectively, such that, 

span{ v1,v?, .  . . , vi, } = K,,(A, Rn), 

span{ w1, w?, . . . , w,, } = K , , ( A ~ ,  L) ,  

W T V ~  = o for all i # k = 1 , 2 , .  . . ,,U. 

An important feature of t,he Lanczos-t,ype process is that 
t,he Lanczos vect.ors (25) a.re genemted by nieaiis of re- 
currences of liinit#ed length, namely (27710 + l)-t,eriii recur- 
rences. For the right, Laiiczos vect,ors, t)liese recurrences 
c m  be summa.rized in compact form a.s follows: 

A V,, = V,, T,, + Vf , p 2 1. (26) 

Here, V,, := [VI  v? v,,] , T,, is an 77. x p banded 
matrix with upper and lower Imndwidth nzo conta.ining 
the recurre1ic.e coefficients, and Vi:’ is a iiia.trix with 
mostly zero or very sma.11 entries t,liat a.ccounts for “de- 
fla.tion” of linearly or a.lmost linearly dependent, coluiiiiis 
in the block Krylov sequence RLl, ARo, 
in (24). The recurrences (26)  are coiiiplemented by “ini- 
tial” recxrrences 

,-. 
V,,, p + Vtl Ro (27 )  

tha.t are used to biorthogonalize the coluinns of tlie “right” 
initial block Ro against tlie columns of the “left” initial 
block L.  In ( 2 7 ) ,  ???,I 5 rank Ro 5 7 n o ,  a.nd p is an up- 
per triangular ml x m o  matrix. The left Lanczos vec- 
tors in (25) are generated by inea,ns of recurrences similar 
t,o (26) and (27). 

In the block-QMR method, tlie riglit Laiiczos vectors 
are used t,o parametrize any possible iterate ( 2 3 )  as fol- 
lows: 

Z, = Z0 + V,, Y,,, where Y,, E (@Lx’no .  ‘(28) 

By (26) and (27), t8he block residual associated with (28) 
is given by 

A 

R,, Rn - V,, T,, Z - Vi:’ 2 

Following t,lie QMR. philosophy and a.ssuining t.1ia.t. t.he 
columns vj of t,he iiia.trix VI,  a.re a.11 nornia.lized to  have 
Euc.lidean length I ,  t1he free para.meter iimtrix Y,, in (28) 
is determined so t,liat t,he Euclidean norm of t,he bra.cketed 
t,erin in (29)  is minimized. Thus, in (28), one chooses Y,, 
as t,lie solution of the matrix leasts-squa.res problem 

In tjhe block-QMR inet,hod, the matrix lea.st,-squares prob- 
lwn (30) is solved by means of st,a.nda,rd t,ecliniques lmsed 
on a, QR dec,omposit,ioii of T,,. In pa.rticular, t.liis allows 
to obtain the solution Y,, by updat.ing the solution Y,,-I 

from t,he previous st,ep. Moreover, t,he a.ssocia.t,e updat,e 
Zi,- 1 - Z,, for t.he a.c,t,ua.l it,erat,es (28) t,uriis out, t*o be a 
simple ra.nk-one upc1a.t.e. For a. &scripttion of this updat,e 
proc,edure and for furt,lier iiiipleiiieiit,a,tioii det.ails. we refer 
the reader to [12]. 

V .  ( I ,  T,’) CONTINUATION 

We now return to t,lie coupled systems of PDE’s that 
a.rise in device simula.tion. In t,liis section, we disc,uss con- 
tainuat8ion t,echniques for coinputring t,he ( 1 ,  1.’) liehavior of 
semiconductor devic.es [7]. 

Recall tha.t, once discretized. t,he DD or EB/ET equa- 
t,ioiis become a. non1inea.r syst,eiii 

Consider para.met,rizing the ( I .  T ’ )  curves by a.rc-length s 
so t1ia.t z - z( s ) .  Tlieii clifferentia.t,ing (31) with respect 
t,o s we get 

Next,, we replace t8he a.rc-length coiidit,ion by one of the 
following pseudo-a.rcleiigt,li condit,ioiis: 

NI = S i j ( I  - I j )  + (2  - @)Th(V - C J )  - Au. 3 7  

Nz = ( I  - Ij)‘ + (V - CJ)‘ - ( A c ~ ) ~ .  
14 



For either choice of N ,  tlie linexized matrices a.re of tlie 
form 

where G’ E Wflx’8 is the usual DD or EB/ET Jacobian, 
and &G, 8,:Nj, E IP!’”. N o k  t,liat ,4 is just the usual 
Jacobian, GI, bordered by a. single row and column. For 
Auj << 1, the mat.rix A is nonsingula,r, even at, simple 
limit points where G’ itself is singu1a.r. 

There are applica.tions (such a.s computing CMOS 
1a.tchup trigger and holding point,s) where limit points 
need to  be found. In this case, bisection or more sophisti- 
cat,ed algorithms a,re qp l i ed  to  find where the curve turns 
back 011 it.self, necessihting numerous solves where G’ is 
ill-conditioned or effectively singu1a.r. ( I ,  V )  continuation 
has proven to  be a highly effective algorithm for such ap- 
plications. 

At bifurcations or for manifold exploration, G’ must be 
normalized by bordering i t  witah two rows a,nd columns. 
There are applica,tions of finding fold lilies in a, manifold 
for which multivariate continua,t,ion is a na.tura1 and effi- 
ca.cious approach. 

VI. INCORPORATING CIRCUIT ELEMENTS INTO 
DEVICE SIMULATION ]MODELS 

Bordered linear systems a.lso arise when device siinula- 
t,ion models are combined with circuit, elements. 

A .  Circuit Ele i i ze ih  

Lumped circuit, elements can be trea.ted via 1l;irchhoff’s 
current and volta.ge la.ws 

A, i = 0 E E?””, 
v = AT 11 E E?’, 

(where A, E Rmx’, 11, v ,  and i a.re the augmented inci- 
dence ma,trix, node voltages, branch voltages, a.nd branch 
currents, respectively) and glob4 constitutive relations 

We refer tlie reader t,o [25] for a detailed discussion of 
these equations. 

For voltage-controlled, lumped elements these reduce to  
the (linearized) nodal equations involving A K, AT where 
A is the incidence matrix. 

B. In co rpo rat a ng Ca 1 % ~  at El e in e iris 

Consider a static device model with coupled lumped el- 
ements. The matrices from the linearizations are bordered 
iiiat,rices of the form 

rT AK,AT “ I  ’ 
G /  A =  [ 

where Gi E R N x N  is the usual DD or EB/ET Jacobian, 
c ,  r E E t N x m  represent tlie coupling between the device 
a.nd circuit equations at  contacts, and A K, AT are tlie 
iiodal network equations. We assume m << N ,  and so G’ 
is the doniinatiiig part of A. 

We remark that continuation can be aspplied to such 
problems as well, introducing 771 + 1 (or even 771 + 2) row 
and column bordering of G’. 

C,’. Block Elimination, 

Consider bordered systems 

where All E C N x N ,  a“? E C n x m ,  and in << N .  For 
the case that A11 is nonsingular, one popular approach 
to solving (32) is to  first perform one step of block elimi- 
nation with All .  This results in t,he equivalent system 

Clearly, this approach requires the solution of m + 1 lin- 
ear systems with the same matrix All to  obtain the m 
columns of A;/ a12 and the vector A;/ bl .  

When direct sparse methods are used, one can solve 
these ni + 1 systems as follows: 

(1) Factor P A11 = L U; 

( 2 )  Do 177+1 backsolves to compute A,’a1“ and A;: bl .  

For limit-point computations with continuation, All  is 
nearly singular, and then more complicated techniques 
like deflated elimination or workiiig-precision iterative re- 
finement may be required. In this case, more than m + 1 
backsolves are needed. 

When iterative methods are used, the m+ 1 solves with 
All can be summarized as a block system 

All Z = [ a 1 2  bl] 

and the block-QMR method caii be employed. 

D. Borderaiig Precondataoners 

Another approach to  solving (32), which does not re- 
quire A11 to be nonsingular, is to simply apply a Krylov- 
subspace inethods to  the bordered system (32). The bor- 
dered structure can still he used in the construction of 
suitable preconditioners for (32). 

Given any preconditioner M1l for Al l ,  we want to  con- 
struct a preconditioner M for the bordered matrix A 
in (32), Since M11 is a preconditioner, M11 = L . R, 
where systems with L and R can be solved easily. We 
theii border L and R by setting 
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and use M = MI ‘Ma as a preconditioner for A. In (33), 
we choose 1, r, c ,  and d such that RT1 = agl, Lr = a12, 
and c d = a22 - lT r. Then the preconditioner 

matches A in its bordered part. 

VII. CONCLUDING REMARKS 

Semiconductor device modeling remains an important 
tool for exploring novel structures and to estimate the im- 
pact of technology (i.e., process) changes. As line widths 
shrink, interactions between devices or interconnects be- 
come relevant; simulation of multiple devices coupled by 
circuit elements is important, and it often requires three- 
dimensional modeling. Moreover , device models including 
energy transport are needed for small device geometries 
or more exotic structures; these models involve more non- 
linear, coupled PDEs than the traditional drift-diffusion 
equations. For two-dimensional drift-diffusion simulators 
of individual devices, sparse, direct factorization algo- 
rithms were adequate to  deal with the linear systems 
arising from the solution of the nonlinear systems. How- 
ever, in the more complicated simulation environment de- 
scribed here, iterative methods are essential. Our chal- 
lenge has been to supply iterative algorithms that ap- 
proach the same level of robustness as the direct schemes. 

An important component of semiconductor process sim- 
ulation are models for impurity diffusion, which involve 
multiple species and thereby many coupled advection- 
diffusion equations. The same iterative methods are ap- 
plicable to  this set of problems as well. 

In recent years, there have been many advances in the 
area of Krylov-subspace methods, and these algorithms 
have become standard tools for the iterative solution of 
large, sparse linear systems. Research activities are now 
beginning to  shift away from basic Krylov-subspace meth- 
ods to the development of better and more robust pre- 
conditioners for nonsymmetric systems. For symmetric 
positive definite systems resulting from scalar self-adjoint 
PDE’s, multi-level preconditioners, such as hierarchical 
bases, have proven to be very efficient; see, e.g., [27], [26]. 
The development of similarly efficient multi-level precon- 
ditioners for the nonsymmetric linear systems arising from 
non-selfadjoint PDE’s or even coupled systems of PDE’s, 
such as drift-diffusion equations, has hardly begun. 
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