
6-2
. - .

Simulation Environment for Semiconductor Technology Analysis
Ch. Pichler, R. Plasun, R. Strasser, and S. Selberherr

Institute for Microelectronics, TU Vienna, Gusshausstrasse 27-29, A-1040 Vienna, Austria
Phone +43/1/58801-5239, FAX +43/1/5059224, e-mail pichler@iue.tuwien.ac.at

A programmable simulation environment for semiconductor technology analysis is presented. The SIESTA
project sets out to combine the advantages of a comfortable, intuitive visual user interface with the flexibility and
versatility of a high-level programming language. It is designed to provide a set of framework services to ensure a
straight-forward definition of complex technology analysis tasks. Special emphasis has been put on establishing
in an object-oriented fashion a uniform and easy-to-use interface for applications and extensions supplied by the
user. LISP objects are used to represent basic entities like process steps, process flows, experiments, and agents
for design of experiments (DOE), response surface modeling (RSM), and optimization and fitting modules.
The integration of heterogeneous process and device simulation tools is based on PIF [l] as a common tool data
exchange format. Nevertheless, native tool data formats are supported as well, ensuring maximum flexibility
in the choice of simulation tools for a particular task or a t a particular site, while minimizing computation
overhead and numerical errors due to excess data conversion. The automatic generation of split points both for
sequentially and simultaneously initiated runs and the parallel and distributed execution of independent split
tree branches allow a fast computation of large-scale experiments. A persistent run data base keeps the results
(output files and extracted data) of each completed step and prevents unnecessary re-computations.
Archi tec ture and Components. The implementation of the simulation environment is based on the VISTA
framework [2] and it’s extension language VLISP, an enhanced version of XLISP. A class of evaluable entzty
(EVE) objects has been defined to provide uniform access to basic services like process flow simulation and
RSM evaluation as well as to complex tasks specified by the user. They establish a.standardized interface to
perform evaluations and can be defined in terms of existing EVES in a nested manner. E.g., the minimization
of the bulk current for a given process is encapsulated in an object that is evaluated for a set of initial value
vectors for the optimizer generated by the DOE module or by a simple LISP loop.
Fig. 1 shows the main functional components and their interactions. All communication between objects and
between the framework and external executables works on an asynchronous basis to allow simultaneous con-
trol of a number of independent tasks within the simulation environment. The optimizer module [4] performs
optimizations under non-linear constraints and nonlinear parameter estimations, the DOE module creates exper-
iment inputs according to standard design schemes, and the RSM module generates and evaluates polynomial
response surfaces of up to second order. Both the DOE and RSM modules support a number of transformations
to adequately represent non-linear systems.
The run controller uses a process flow representation [3] to build the desired devices. It generates split trees and
controls parallel computation of simulation jobs on the network. A number of framework tools provide gridding
and geometry services to ensure data consistency and facilitate data exchange between different simulators.
Note that both batch and interactive operations are fully supported. A batch file can be used to run complete
analysis tasks over night, to customize the environment and to define new objects, or to load and initiate an
analysis while monitoring and controlling it via the visual user interface.
Applications. To illustrate the use of high-level commands to specify a complex TCAD task, fig. 2 shows the
definition of a central composite circumscribed design (CCC) for the bulk current and the threshold voltage
for the N-device as functions of implantation energies and doses for a standard Si-gate CMOS process [5]. The
Def ine-Task statement creates an EVE from a process flow description, Eve-Def ine-Control statements mark
specific process parameters as control variables for subsequent evaluations. The Eve-Set-Control initializes
nominal values and ranges of all control variables as well as transformations to use. The process consists of 79
fabrication steps and has been simulated on a mixed cluster of UNIX workstations using PROMIS, TSUPREM4,
and MINIMOS simulators. Fig. 3 shows part of the visual user interface during parallel computation of the
runs created by the DOE module.
Conclusions. A highly programmable environment designed to support the most complex of TCAD tasks
has been presented. The concept of evaluable entities provides a sound basis for the definition and execution
of nested and aggregate analysis problems. Heterogeneous simulators and framework services are effectively
encapsulated and form the basic building blocks for higher-level applications in process design, process analysis
and process optimization.

F. Fasching et al., “A PIF implementation for TCAD purposes”, SISPED IV, 1991, pp. 477-482
S. Halama et al., “The Viennese Integrated System for Technology CAD Applications”, Technology C A D
Systems, Springer 1993, pp. 197-236
Ch. Pichler et. al., “Process Flow Representation within the VISTA Framework”, SISPED V, Springer 1993,

Ch. Pichler et. al., “TCAD Optimization Based on Task-Level Framework Services”, SISPED VI, Springer

G. Schumicki and P. Seegebrecht, Prozefitechnologie, Springer 1991, pp. 370-380.

pp. 25-28.

1995, pp. 70-73.

147

[It) Visual User Interface

Figure 1: Overview of basic functional components.
Evaluable entities (EVE) provide a uniform inter-
face for computation requests, agents connect exter-
nal services with the framework. Both agents and
EVES are VLISP objects.

;; dofino a l l 0 crntrol and rpsponsoa vsrinblos by specifying praoss stop
;; n" and vpriablo i n the procsss flow

Figure 2: Batch file to define and submit high-level
tasks. Control and response variables are selected
from an existing process flow description. A set of
experiments is generated by the DOE module and
submitted to the run controller for execution.

Ireate substrate
Sxidation
Deposit resist
Expose
Develop
Etch oxide
Strip resist
Grow screening oxide
N-well-implant
Well diffusion
Strip oxide
Grow oxide
Deposite nitride
Deposit resist
Expose
Strip exposed
Etch nitride

Geometry segmentlist--daaa
Doping Boron
Doping Phosphorus
Doping active Boron
Doping active Phosphorus

Figure 3: Part of the visual user interface during parallel, distributed computation of 17 runs gen-
erated via a half-factorial central-composite design for a complete CMOS process. 9 runs are active,
while the remaining 8 are waiting for data to become available at split points. Direct access is .
provided to data generated at each step.

E

Acknowledgment. Our work is significantly supported by Austria Mikro Systeme AG, Unterpremstatten,
Austria; Christian Doppler Gesellschaft, Vienna, Austria; Digital Equipment Corporation at Hudson, USA.

148

