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A programmable simulation environment for semiconductor technology analysis is presented. The SIESTA 
project sets out to  combine the advantages of a comfortable, intuitive visual user interface with the flexibility and 
versatility of a high-level programming language. It is designed to provide a set of framework services to ensure a 
straight-forward definition of complex technology analysis tasks. Special emphasis has been put on establishing 
in an object-oriented fashion a uniform and easy-to-use interface for applications and extensions supplied by the 
user. LISP objects are used to  represent basic entities like process steps, process flows, experiments, and agents 
for design of experiments (DOE), response surface modeling (RSM), and optimization and fitting modules. 
The integration of heterogeneous process and device simulation tools is based on PIF [l] as a common tool data 
exchange format. Nevertheless, native tool data formats are supported as well, ensuring maximum flexibility 
in the choice of simulation tools for a particular task or a t  a particular site, while minimizing computation 
overhead and numerical errors due to  excess data conversion. The automatic generation of split points both for 
sequentially and simultaneously initiated runs and the parallel and distributed execution of independent split 
tree branches allow a fast computation of large-scale experiments. A persistent run data base keeps the results 
(output files and extracted data) of each completed step and prevents unnecessary re-computations. 
Archi tec ture  and Components. The implementation of the simulation environment is based on the VISTA 
framework [2] and it’s extension language VLISP, an enhanced version of XLISP. A class of evaluable entzty 
(EVE) objects has been defined to  provide uniform access to  basic services like process flow simulation and 
RSM evaluation as well as to  complex tasks specified by the user. They establish a.standardized interface to  
perform evaluations and can be defined in terms of existing EVES in a nested manner. E.g., the minimization 
of the bulk current for a given process is encapsulated in an object that is evaluated for a set of initial value 
vectors for the optimizer generated by the DOE module or by a simple LISP loop. 
Fig. 1 shows the main functional components and their interactions. All communication between objects and 
between the framework and external executables works on an asynchronous basis to allow simultaneous con- 
trol of a number of independent tasks within the simulation environment. The optimizer module [4] performs 
optimizations under non-linear constraints and nonlinear parameter estimations, the DOE module creates exper- 
iment inputs according to  standard design schemes, and the RSM module generates and evaluates polynomial 
response surfaces of up to  second order. Both the DOE and RSM modules support a number of transformations 
to adequately represent non-linear systems. 
The run controller uses a process flow representation [3] to  build the desired devices. It generates split trees and 
controls parallel computation of simulation jobs on the network. A number of framework tools provide gridding 
and geometry services to  ensure data consistency and facilitate data exchange between different simulators. 
Note that both batch and interactive operations are fully supported. A batch file can be used to run complete 
analysis tasks over night, to  customize the environment and to  define new objects, or to  load and initiate an 
analysis while monitoring and controlling it via the visual user interface. 
Applications. To illustrate the use of high-level commands to  specify a complex TCAD task, fig. 2 shows the 
definition of a central composite circumscribed design (CCC) for the bulk current and the threshold voltage 
for the N-device as functions of implantation energies and doses for a standard Si-gate CMOS process [5]. The 
Def ine-Task statement creates an EVE from a process flow description, Eve-Def ine-Control statements mark 
specific process parameters as control variables for subsequent evaluations. The Eve-Set-Control initializes 
nominal values and ranges of all control variables as well as transformations to  use. The process consists of 79 
fabrication steps and has been simulated on a mixed cluster of UNIX workstations using PROMIS, TSUPREM4, 
and MINIMOS simulators. Fig. 3 shows part of the visual user interface during parallel computation of the 
runs created by the DOE module. 
Conclusions. A highly programmable environment designed to  support the most complex of TCAD tasks 
has been presented. The concept of evaluable entities provides a sound basis for the definition and execution 
of nested and aggregate analysis problems. Heterogeneous simulators and framework services are effectively 
encapsulated and form the basic building blocks for higher-level applications in process design, process analysis 
and process optimization. 
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[It) Visual User Interface 

Figure 1: Overview of basic functional components. 
Evaluable entities (EVE) provide a uniform inter- 
face for computation requests, agents connect exter- 
nal services with the framework. Both agents and 
EVES are VLISP objects. 
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Figure 2: Batch file to  define and submit high-level 
tasks. Control and response variables are selected 
from an existing process flow description. A set of 
experiments is generated by the DOE module and 
submitted to the run controller for execution. 
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Figure 3: Part of the visual user interface during parallel, distributed computation of 17 runs gen- 
erated via a half-factorial central-composite design for a complete CMOS process. 9 runs are active, 
while the remaining 8 are waiting for data  to become available at split points. Direct access is . 
provided to data generated at each step. 
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