
P-29

High Performance Semiconductor Device Simulation
on Shared Memory Parallel Computers

Mounir Hahad and Peter Hopper
S i l v a International

4701, Patrick Henry Drive, Santa Clara, CA-95054
e-mail: {mounirh,peteh}Qsilvaco.com, phone: (+I) 408.654.4326, fax: (+l) 408.496.6060

1 Introduction
Recently a large number of praclical, low cost, parallel computers have been made available on the market from
all of the major workstation vendors. Although these supercomput.ers (called shared memory symmetric mul-
tiprocessors) provide a single memory shared by all the procwsors, t-hey still require specific code development
in order to run a single job in parallel. Fortunately, shxrd memory progrmming, as opposcd to riistribritd
memory programming, is very close to the usual sequential programming style. -While shared memory progam-
ming engineers are focusing on getting the most of the computing power, distributed memory environments
are still struggling toward a programming language standardization. Consequently, the delay to the availability
of codes that would make use of such shared memory architectures is more likely to be minor as compared to
distributed memory pIatforms.

Device simulation is a time consuming, computation intensive class of applications. Thus, it is perfectly
suited to be adapted to take full advantage of shard memory multiprocessor computers. Although Silvaco’s
Virtual Wafer Fab (VWF) Automation Tools could make full use of this computer architccture by task farming
statistical simulations onto a pwal1el machine, sending a job to each processor for example, the problem of
m+ng single interactive jobs run faster, still remained.

Silvaco has recently developed a new parallel version of ATLAS (Silvm’s device simulation tool) now capable
of running much faster on these types of machines. The scheme of parallelization employed by Silvaco has focused
on the general case of 2D Device simulation. All forms of 2D device simulations benefit from this approach.
Tho following article describes .some of the types of general structures that can be simulated in parallel.

Bench marking has been completed on machines ranging fiom single proccssor Silicon Graphiw (SGI) ma-
chines, to small desk-side server machines to large scale supercomputers. All tests have been performed at the
super computer facilities within SGI.

Today, Parallel ATLAS is available on SGI machines, offering the very high performance as indicated below.
Further current work k going ahead to make available the same parallel code on all other mainstream parallel
machines shortly. These machines will include those standard parallel machines from Convex, HP and SUN.
2 Problem Description
At the core of ATLASexist a set of physical models the simulator relies upon to predict all sorts of semiconductor
device behavior. The equations describing the underlying physics (there can be up to 6 coupled equations to
solve: Pokson, electron and hole continuity, electron, hole and lattice temperature.) are solved using n finite
difference method. These methods discretize the partial difFerential equations (PDEs) to reach an approximate
solution to the problem. Thc finite difference method implemented within ATLAS is by far the most time
consuming phase during any simulation run and thus, has been the natural target for the parallelization work.

The first step of a finite difference approach is to overlay a mesh on a device structure geometry for discretiza-
tion purposes. Within Silvaco’s Virtual Wafer Fab (VWF) integrated environment, the meshing can either be
generated in ATHENA during the process simulation, by DevEdit (a device meshing tool) or in ATLAS itself.
As we will discuss later, the speed of the parallel simulation may vary dspcnding on the origin of the mesh due
to different meshing algorithms.

Once the meshing has been performed, the simulator uses an iterative method to solve a non-linear system
of equations. Each step of the non-linear method (Newton, Gummel or a combination of both) requires the
following two steps:

137

http://mounirh,peteh}Qsilvaco.com

9 evaluation of the sparse Jacobian matrix, which actual size depends on the number of nodes in the mesh

.1 solution of a large sparse linear system of equations, which ATLASimplements using the LU decomposition

Careful examination of code profiles show that the assembly phase and the LU decomposition account for over
90 % of the total execution time of large simulations. Consequently, we have concentrated the parallelization
efforts on these two phases. A parallekation at a higher level of task granularity is out of the question since
each iteration relies on the solution of the previous one to update the solution of the non-linear system. In the
next sections, we describe the problems facing such a parallelization and discuss the approaches that wc have
chosen to implement.

and the number of PDEs being solved. We will refer to this operation as the assembly phase.

approach.

3 Parallel Matrix Assembly
The assembly phase can be considered as a set of functions applied t.0 each element of the mesh, evaluating
the contribution of that single element to the overall structure. Considering the nature of the computations
involved (associative operations), the order in which the elements are processed is irrelevant to the correctness of
the results. In other words, they can be simultaneously executed. Consistently, Pamllel ATLAS distributes the
mesh elements responsibility to the available processors according to the results of a particular mesh partitioning
technique. This mesh partitioning technique will assign neighboring elements to the same processor in order to
reduce inter processor synchronization [l].

4 Parallel Sparse LU Decomposition
Efficient parallelization of sparse LU decomposition is still an active field of research- Good performance is
usually extremely difficult to obtain and good scalability is even harder. The implementation in Pamllel ATLAS
features state of the art techniques developed at Silvaco, to achieve a very high level of efficiency on shared
memory para.lle1 supercomputers. We developed an event driven synchronization algorithm coupled to a level
ordering of the task graph. This work is a gcneralization of the well documented sparse Cholesky factorization
using elimination trees[2]. 'Further experiments indicate that the scalability of this implementation is sustained
as the mesh size and the number of processorj grow. The efficiency of the parallel code implemented in this
phase is a key issue to the overall performance of the simulator.

5 Conclusion
The work described in this paper is the evidence that, thanks to parallelization, time can be less of a bottleneck
to numerical device simulation. With viable execution times, there iu less need for a trade-off between larger
structures and finer details to achieve an acceptable accuracy in a reasonable amount. of time. Table 1 show that
P u r d e l ATLAS N I ~ S approximately 3 times faster on a 4 processors machine while simulating a wide variety
of devices. Complete timing results are to be reported in the full paper.

'

processors I SO1 I IGBT 1 ESD I HEMT I LATCHUP I CMOS
1 CPU lhl7mu I Oh28m I 21h34mn I 7h20mn I 2h08mrr 1 lh36mn I
2 CPUS
4 c r u s 7h59mn 2h27mn Oh40mn Oh35mn Oh24mn OhlOmn

1 12h57m 14h22mn I lh20mn 1 Oh57mn 1 Oh46mn I Ohl7mn 1
Table 1: Purallel ATLAS Execution times on a 4-CPUs SGI Powerchallenge.

References
Mounir Hahad, Thierry Priol, and Jocelyne Erhel. Languages, Compilers ond Run-Time Systems for Scalable
Computers, chapter Compilation of Assembly Patterns on a Shared Virtual Memory. Kluwer Academic
Publishers, 1996.

J.W.H. Liu. The role ofelimhation trees in sparse factorization. Siam joumd of matriz analvsis applications,
pages 134-172,1990.

138

