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There is still a large amount of disagreement concerning the basic diffusion mechanisms in silicon. Especially, 
there has been a long standing controversy about the macroscopic diffusion equations in case of the vacancy 
mechanism. If both dopant and vacancy gradients act as driving forces, the dopant flux J, can be written in the 
general form 

where C,, C,, and C,, denote the concentrations of dopants, vacancies, and lattice sites. D, and T, are the 
diffusion coefficient and the transport coefficient of the dopants, the superscript ’0’ indicates divison by the site 
fraction of vacancies or dopants, respectively. As long as particle concentrations are low D: and Tdo are 
constants whereas D, and T, depend linearly on C, and C,, respectively. Pair diffusion models [ 11 predict that 
the relation a=T:/D: must be +1 whereas other authors [2] claim that a= -1 and hence state that the pair 
diffusion models that are frequently used in process simulation are inconsistent with the vacancy mechanism. 
To clarify this discrepancy, we have performed calculations of D: and T: that account for the actual crystal 
structure of silicon. The results depend on the modification of the vacancy potential energy in the vicinity of the 
dopant atom. Since no accurate data for this interaction is available, we performed calculations with a number 
of model interaction potentials with different depth, range and shape to outline the possible range of the factor 
a. For the sake of simplicity, we started with a simple rectangular shape which allows for an easy 
parameterization according to depth and raflge, and already provides most of the important results. For 
comparison, also other potential shapes were considered. Some of the basic principles of the calculation are 
described in [3]. However, large improvements of the numerical and theoretical methods have been achieved 
since then that made it possible to examine a variety of interactions in a reasonable time and to obtain 
quantitative values that do not suffer from the very limited accuracy of the preliminary results of [3]. The errors 
of the simulation results shown here were below 1% for a given potential and therefore error bars were omitted 
in the graphs. 
An interesting first result of the investigation was that a reduction of the actication energy of dopant diffusivity 
with respect to self-diffusivity (which is experimentally found to be 1 to 2 eV for the usual dopants) does not 
require a real binding of the vacancy to the dopant. An interaction that only reduces the height of the potential 
barriers in the neighborhood of the dopant was found to give similar results and therefore this kind of 
interaction was also included in the analysis. A schematic drawing of the two types of interaction is shown in 
Fig. 1 for a simple rectangular (box-shaped) potential. They are of course only two extreme cases of the general 
situation. The simulation results for the reduction of the activation energy of D, compared to Dself are shown in 
Fig.2 for different rectangular interaction potentials and one potential that depends linearly on the distance to 
the dopant atom. It can be seen that for a given potential depth this reduction is only comparable to the depth 
if the potential extends to at least the 3rd coordination number. This is in agreement with earlier results from 
the literature [4]. The calculatedvalues for the relation a=T:/D: from the different model potentials are shown 
in Fig.3 as a function of potential range and in Fig.4 as a function of the potential depth for a range to the 3rd 
coordination number. The comparison of the results for the box-shaped and the linear potentials shows that the 
shape does not affect very much the qualitative behavior. However, since the results show the largest sensitivity 
on the potential in the vicinity of the 3rd nearest neighbor site (as can be seen from the results of the rectangular 
potentials), the total depth of the linear potential (measured at zero distance) must be larger to give similar 
quantitative values. Also other potentials (including coulomb potentials) have been investigated and confirmed 
these findings. As the figures show, the obtained results for a range from -2 (for tracer diffusion) to values very 
close to 1 if both the potential depth as well as its range lie above a certain value. 
From the results shown in Fig.3 and Fig.4, the following conclusions can be drawn: The prediction a=-I  [2] 
may be fullfilled for very special interaction potentials but obviously this model has no general validy. On the 
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other hand, the prediction a=+1 from pair diffusion [ 11 can be considered as the limit to which the value of ci 
converges for any potential shape if both the depth and the range of the interaction is increased. Moreover, the 
simulation results shown above demonstrate that for all the potential types considered here the value of a lies 
very close to +1 if the reduction of the activation energy of D, with respect to the activation energy of tracer 
diffusion is larger than about 0.5eV. Since this reduction is experimentally found to be in the range 1 to 2 eV 
for the commonly used dopants, it may be concluded even without the knowledge of the real interaction 
potential that the pair diffusion model is very likely to be a valid description of diffusion via the vacancy 
mechanism. 
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Fig. 1 : Schematic drawing of the vacancy potential as 
function of the distance to the impurity. The dotted 
line shows the interaction potential with the impurity 
at coordination number 0. 
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Fig.3: Relation CL = Tdo/D: as function of range of the 
model interaction potentials. 
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Fig.2: Reduction of activation energy of dopant 
diffusivity with respect to self-diffusion for different 
model interaction potentials. 
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Fig.4: Relation a = T:/D: as function of the depth of 
the model interaction potentials. 
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