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Abstract 

Based on the Feynman path integral formulation for the time evolution ampli- 
tude, we compute the quantum mechanical transition probability for a charge 
carrier in a semiconductor crystal. Our implementation is performed on a paral- 
lel computer (Parsytec GC 64). We discuss the ability of the method to achieve 
a spatially resolved probability amplitude which is necessary for the analysis 
of quantum electronic devices. Macroscopic observables are evaluated using 
this probability function. It. complements the conventional distribution func- 
tion which results from the solution of the semi-classical Boltzmann transport 
?quation. 

1. Introduction 

It has been suggested that the Feynman path integral formula ti or^ of quantum me- 
chanics is an appropriate method for describing quantum transport in ultrasmall 
electronic devices [I], [2]. One of the advantages of the method is that the coupling of 
charge carriers to phonons and other scattering processes, non-constant, electric fields 
which are not necessarily sinusoidal, as well as complicated band and quantum well 
structures can easily be included, which are encountered in hetero-structure devices 
such as Resonant Tunneling Diodes. Thanks to these promising facts and despite of 
the drawbacks of the method like high CPU time requirements and the difficulty to 
estimate Ihe error of the approximations, we aim to derive a simulation technique 
which is intended to overcome the limitations of the Boltzmann transport equation. 
Due to the wave-like character of the charge carriers, there is a limit in the charac- 
teristic length of devices above which carriers can be described as localized particles. 
Hetero-structure devices are an example lor this situation. 

2.  Path integrals on a discretized time axis 

The probability amplitude of a physical system to evolve from time t ,  to tb is given 
by the matrix elements of the time-evolution operator U(tb ,  t a )  = exp(i'H(tb - t , ) / h ) ,  
where 'H is the Hamiltonian of the system [3]. In order to study the momentum 
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distribution function for homogeneous material it is appr~pr ia t~e  to expand U( tb , ta )  
in momentum eigenfunctions, where the following expression evolves ' 

This expression means that the exponential has to be evaluated for all momentum- 
space paths fia N> gb with t,he resulting terms being summed up. The spatial integrals 
refer to time points i l  . . . tN+l,  so all possible spatial end points are summed up. No 
spatial point Fo occurs. 

The momentum time evolution amplitude (Fb, tb(&, t n )  equals the conditional prob- 
ability amplitude for a particle to come to a momentum state I$b > at  time tb  after 
starting with (p', > at  time ta. Assuming knowledge of the wavefunction Q(@, t a ) ,  
the probability of measuring a momentum $ a t  time tb  is given by the distribution 
function f (p', t b )  

Defining cells at  time ta  around the momentum values {p', p',2,p',3,. . .} and at  time 
tb r  {p ' j ,$f ,  $;,. . .}, the following calculation scheme is set up 

In our calculations we assume 

where the gMB are drawn from a Maxwell-130ltzmann-distribution. The consequence 
of the 6-function is, thal one has to consider only momentum values as path 
beginning values. It is important to mention that by the same way any moment.um 
distribution function resulting from semiclassical methods (e.g. Monte Carlo solution 
of the Boltzmann transport equation) could be used. That  is a possible way of 
combining semiclassical and quantum regime transport. 

The Hamiltonian includes an imaginary potential term for the scattering of the charge 
carriers and the energy term due to the electric field as well as a term describ- 
ing the conduction band structure. The imaginary potential term leads t,o a factor 
exp(- c,":~' / 2 ~ ( p ' , ) )  in the integral, stochastically damping out momentum config- 
urations being associated with high scattering rates 1 / T  (p3. Thus the momentum 

'The equality holds only for IV - uo. In the numerical treatment N has to be finite. 
2The Dirac bra-ket notation is used. The subindex of the eigenfunctions 1% > denotes them 

belonging to the corresponding time point t, 
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inte&als can be performed using the Metropolis algorithm (cf. [4]). The space inte- 
grals are reduced to integrals over boxes acompanying the classical space path. The 
box size is chosen to be of range of the characteristic length, which is considered 
to be a measure for the size of the quantum mechanical fluctuations. This method 
corresponds to the windowing technique described in [2]. From the point of view of 
quantum device simulations, the interesting regions are those where no classical paths 
exist. The estimate for the size of the integration boxes is of crucial importance. 

The momentum axis lying in the direction of the electric field is subdivided into cells. 
For each path ending in one of the cells, the corresponging exponential is summed up 
by its real and imaginary part separately, yielding the quantum mechanical phase. 

3. Spatially resolved distribution functions for quantum devices 

For the understanding of the quantum interference phenomena in heterostructures one 
is interested in a spatially resolved momentum distribution function. By expanding 
the time evolution operator in space eigenfunctions yields the more familiar path 
int(egra1 

N 

(6, tbli., t.) % n [/- d i n ]  [/- 51 n=l -00 n=l -- 27rh 

In this expression the initial position 6 = 6 is assumed to be given. By defining 
space cells (in the direction of the electric field) xce61',xce"2 , . . . for the end point of 
time the probability of reaching a cell and the velocity v equals 

For each spatial cell we define momentum cells and sum up the probabilities for 
the momentum occurring in it. This is how to get a spatially resolved momentum 
distribution function, e.g. to analyse the region behind the barriers in a Double- 
Barrier-RTD. 

4. Importance Sampling on the Parallel Computer 

Our implementations are performed on a parallel computer containing 64 nodes with 
two Power PC plus processors each (80 MFlops, 16 MB memory per node). A unit of 
16 nodes is connected in a fixed topology with the other units. We use the Parix run- 
time-system with the programming language C. We define virtual link connections 
from one node to all the others, thus obtaining a farming model [ 5 ] .  The farmer 
organizes the distribution of the starting data and the collection of the results. 

The program calculates the momentum distribution function for a fixed time interval. 
Every processor generates one chain of paths, thus the communication between the 

3The momentum distribution for a spatial region contains less phase information than the one 
derived above, since the contributing palhs are taken from a small spatial region. The interference 
with paths ending in other regions is not accounted for in this sum. 
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nodes is kept to a minimum. In order to save memory, the momentum distribution 
was calculated only in the direction of the electric field. Two other grids were set up 
to register the velocities and the energies occurring at the end time. For each cell, 
the real and imaginary parts of the exponential were summed up. The probabilities 
for the various processors are calculated locally and then sent to the master. The 
average of the probabilities is calculated for every cell by the master. The decrease of 
the standard deviation can be controlled by the master processor at  synchronisation 
points. For the numerical solution of the spatial distribution functions, every proces- 
sor receives a space cell. The end points of all the generated paths on one processor 
are kept at  this value. The occurring momentum end points are registered, as well as 
the energies and the velocities. Apart from the scattering potential, the approxima- 
tion error depends on the discretization of the time interval and on the sizes of the 
cells. 

5. Results and Conclusions 

We calculate the energy. velocity, and wave vector distribution as a function of time. 
We use a continuous parameterization for the non-parabolic three valley conduction 
band structure over the Brillouin zone. The imaginary scattering potential is derived 
from first-order scattering rates. In Figure I ,  one can see the probability of an eleci.ron 
to be encountered in wave-vector states 
for different time intervals elapsed since 
the field was turned on and it started 
to propagate. The results obtained from 
standard Monte Carlo technique are re- 

+ 
produced in their tendency, although not 2 
in their accuracy. The probability to be 2"" 
found in an upper L-valley increases with goo, 
time, while the Gamma-valley probabil- 
ity decreases. Due to the size of h the 
method should be applied for an energy .9.5'10" .l.O'lo* 5.0.16 O . O ' l ~  

and time range that fulfill ~ ( p 3 / h  . ( t ,  - wave vector ( ~ m )  

t b )  a 1 otherwise leading to large oscil- Figure 1 :  Momentum distribut~on func- 
lations that consume a huge amount of tion for bulk GaAs and const,ant elect,ric 
cpu-time. field. 
Acknowledgements: The author gratefully acknowledges the Deutsche Forschungs- 
gemeinschaft for financial support. 

References 

[ I ]  Massimo V. Fischetti and D. J .  DiMaria, "Quantum Monte Carlo Simulation of 
High-Field Electron Transport: An Application to Silicon Dioxide." Phys. Rev. 
Lett., vol. 55, pp. 2475 - 2478, 1985. 

[2] L. F. Register, M. A. Stroscio and M. A. Littlejohn, "Efficient path-integral Monte 
Carlo technique for ultrasmall device applications," Superlatt. M., vol. 6, pp. 233 
- 243, 1989. 

[3] Hagen Kleinert, "Pfadintegrals in Quantum Mechanics, Statistics and Polymer 
Physics", BI-Wiss.-Verl., 1993 

[4] Malvin H. Kalos and Paula A. Whitlock, "Monte Carlo Methods", Wiley, 1986 
(51 Dimitri P. Bertsekas and John N .  Tsitsiklis, "Parallel and Distributed Computa- 

t~on",  Prentice-Hall, 1989 




