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Abstract

A generalisation of the conventional relaxation-time approximation for bipolar transport
with electron-hole scattering is presented. A simple phenomenological ansatz leads to
Generalised Drift-Dittusion current equations, which contain both conventional Drift-
Diffusion equations and matrix-form Drift-Diffusion equations with drag currents as
special cases. The eftect on carrier transport in semiconductor devices under low and high
injection conditions is discussed analytically and compared with simulation results.

1. Introduction

The correct description of electron-hole scattering (EHS) influence on drift- and
diffusion-dominated charge carrier transport is important for the simulation of all bipolar
devices, especially for bipolar power devices, as it chiefly determines the voltage drop
over the device in the forward biased high injection regime. Many authors [1-6] have
investigated this subject, establishing two types of current equations, which can be
characterised as conventional Drift-Diffusion equations (Van Roosbroeck-type) and
matrix-form Drift-Diffusion equations with drag currents (Avakyants-type). However,
once fitted to achieve agreement with ohmic mobility data, both approaches cannot
describe other experiments properly. Avakyants-type equations predict an injection-
independent ambipolar diffusion constant, in contradiction to experimental data [9]. Both
types of equations fail to explain the asymmetric steady-state carrier distributions at high
current densities [10]. In this paper, the analysis of the coupled Boltzmann Equations for
electrons and holes leads to a natral generalisation of the usual relaxation-time
approximation for the collision terms. A simple phenomenological ansatz yields analytic
generalised Drift-Diffusion current expressions (GDD), which contain both Van
Roosbroeck- and Avakyants-type models as limiting cases.

2. Derivation of Model Equations

The distribution functions for electrons and holes f,(k,x,1), f, (k,x,t) are given by the
solution of the coupled Boltzmann Transport Equations (BTEs)
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which can be separated into the terms caused by lattice scattering (mainly phonon and
ionized impurities scattering), electron-hole scattering (EHS) and scattering of carriers of
the same type (EES and HHS). At the moment, the EES and HHS terms will be
neglected, since their influence on mobility is rather small and can be included by some
phenomenological corrections to the end formulae {11,12].

For the linearised BTEs, the relaxation-time approximation proves to describe the
collision terms for lattice scattering reasonably in most of the cases. The collision
integrals due to EHS cannot be expressed by the non equilibrium parts of the distribution
function of only one carrier type, since e.g. momentum transfer from non equilibrium
holes can drag the electron distribution function out of initial equilibrium. The simplest
physically consistent approximation for the EHS collision terms is a modified relaxation-
time ansatz, which includes additional terms caused by carrier drag:
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The superscript "0" in (2) denotes equilibrium distribution functions, <t,,,T,, are
relaxation times of electron and hole systems due to EHS, and B,.B, are some
phenomenological coupling functions. Equation (2) is far from being mathematically
exact, but it gives a qualitative description of the two main physical processes caused by
EHS : the relaxation of the non equilibrium part (first terms) as well as the drag out of
equilibrium due to the existence of the non equilibrium part of the scattering partner
(second terms). Using the approximation (2), the relaxation-time approximation for
lattice scattering and neglecting the influence of same type carrier scattering, a formal
solution of the coupled BTEs (1) can be derived. A further approximation step yields the
Generalised Drift-Diffusion current equations
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uf;,u(;,, are electron and hole lattice mobilities due to phonon and ionized impurity
scatlering, Wpn = C/n,un,, = C/ p are electron-hole mobilities (the constant C can weakly
depend on (n+p) because of screening elfects) and B is a phenomenological drag
parameler. A detailed motivation of (2) and (3) will be published in a longer paper [12].
It can be easily shown that for the special case B=0 the oft-diagonal mobilities vanish and
the equations (3,4) transform into the conventional Van Roosbroeck current equations.
For the case P=I1 the GDD becomes identical to the Avakyants-type equations in the
form proposed by Mnatsakanov et al. |2,3,5].

3. Consequences for Bipolar Devices
For quasi neutral bulk regions, homogeneous doping implies Vi = Vp and (3) becomes
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Equation (5) differs from the conventional current equation due to the fact that for f# 0
the drift and diffusion mobilities are not equal. Using (4), one can show that for low

injection  conditions  the  minority oy
diffusion mobility can be approximated 103
as the usual Mathiessen combination of e B=]

lattice and EHS mobilities and is —B=0

practically independent on the choice of ~ ~ 10 -
. Therefore, as long as the current over § -
a pn-junction can be described by the 2 165J L
sum of minority diffusion currems T | |
(Shockley's approximation), the DC 16 |

current-voltage characteristic should not
depend on the choice of B and no
difference should occur between diode T T T T
characteristics calculated by Avakyants- 00 04 O'SU(VI)-Z 14 16
or Van Roosbroeck current equations. Fig. 1 : Calculated IU characteristics for a np-
Fig. 1 shows the IU-characteristics for a diode and two values of .

highly doped np-diode for B=0 and

B =1. The resulting curves coincide over a long range of current values and only differ
slightly in the high current region, where deviations from the exponential behavior due to
ohmic losses occur. At high currents, the voltage drop is higher for B=1, since the drift
mobility decreases with rising P.
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For high injection conditions, typically occurring in the low doped base of psn-diodes
and thyristors, the voltage drop over the base region is determined by the sum of drift
mobilities, which is therefore the quantity measured by voltage drop experiments like
those performed by Dannhéduser and Krause [7,8]. Fig. 2 shows the numerically
calculated current vollage characteristics of a wide base (440 um) psn-diode for three
different values of B. Obviously, the choice of the drag parameter B has significant
influence on the forward voltage drop under high injection conditions.

The modeling of EHS also strongly affects the stationary spatial distribution of charge
carriers. The simulated carrier distributions in the base are shown in Fig. 3 for a current
density of 1000 A/em? and three values of B: B=1 yields a distribution completely
symmetrical around the minimum, while B=0 produces very strong asymmetries, moving
the distribution’s minimum towards the n-zone.
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Fig. 2: Calculated current-voltage characteristics of  Fig. 3: Charge carrier distribution in the base of
a long base psn-diode the diode trom Fig. 2 at j=1000 Alem?
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