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Abstract 

A new finite element scheme for diffusion process simulation, which allows 
coarse grid spacings in the areas of exponentially varying concentrations and 
fluxes, is proposed. It employs a nonlinear test function obtained from local 
divergence free conditions. Two-dimensional test computations show clear su- 
periority of the exponentially fitted finite element scheme over the standard 
approach, as well as its robustness regarding irregular grid geometry. 

1. Introduction 

The gradually increasing complexity of the multiparticle diffusion models and neces- 
sity to simulate in higher dimensions persistently challenge computational efficiency 
of the modern process simulators. An obvious guideline to cope with the efficiency 
problems in the discretization phase is to make a grid structure as coarse as possi- 
ble for a given tolerance of the discrete solution accuracy. To this end, considerable 
effort has been directed to the development of advanced adaptive grid generation 
techniques for both the finite difference (FD) and finite element (FE)  methods. On 
the other hand, the discretization fitting to the particular features of the solution is 
much less exploited in the diffusion process simulation as an additional grid coars- 
ening technique. The FD scheme that exploits the exponential flux behavior to 
allow the coarse grid spacings in diffusion process simulation, has been proposed 
by Lowther [I]. The main intention of this paper is to propose a corresponding F E  
scheme, which could be also robust for irregular element geometry. 

2. Problem formulation 

The transport of the particles (impurities or point-defects) involved in the diffusion 
process is commonly modeled by the diffusion equations in the form: 

C and Z are the concentration and charge state of the particle. T ,  D, p and p are 
concentration dependent reaction term, diffusion coefficient, mobility and built-in 
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electric potential, which govern various interactions among particles. Introducing 
the normalized chemical potential u = log C and making use of the Einstein relation 
( D l p  = VT, with VT representing the thermal voltage), the diffusion equation (1) 
can be expressed as 

- V . F + R = 0 with F = DeUVv. (2) 

Here v = u + Zp/vT is the normalized particle electrochemical potential, while the 
zero-order term R = deu/dt - r consists of the time-derivative and reaction terms. 
In (2), we consider both u and v (actually, u and p )  as well behaved quantities, 
which is consistent with the basic assumption that the components of the flux F 
are exponentially varying quantities. 

The diffusion equation (2) is defined in a bounded domain C Rn with piecewise 
smooth boundary an. An initial state u = uo at t = 0 is defined in fi = nu  an. Let 
the boundary dS1 consists of Dirichlet (dod)  and Neumann (an,) segments with 
boundary conditions: u = uo on and and F . n = 0 on ann, where n denotes 
the normal vector to the boundary. Without any loss of generality we consider the 
discretization of fi into Ne nonoverlapping elements ne constructed over Nn nodes 
as simplexes, i.e., intervals, triangles or tetrahedra for n = 1,2 or 3. 

3. Exponentially fitted FE scheme 

A class of generalized FE methods [2] is used to derive the FE discretization of (2). 
As a weak integral statement we consider 

where 4; represents an exponentially fitted test function which satisfies the local 
divergence free problems 

V .  (DeUV*;) = 0 in ne 3 i with *;(k) = bik. (4) 

Here i and k denote grid nodes while bik is the Kronecker delta. Although the local 
divergence free problems (4) cannot be solved in a closed form, it seems appropriate 
to assume that DeUV$; varies at least linearly in S1, to achieve first order accuracy. 
With this assumption, $; is given by 

v4; . v u  4; = (4; - aIne(eu)) . elL1-" +aeuv  and a =  
VIn, (eu) . VU' ( 5 )  

where 4; is the standard linear test function and In=(.)  represents a linear interpo- 
lation from the nodal values in the element 0,. In the special case of the piecewise 
constant u, we have 4; = 4;. The exponentially fitted FE scheme is obtained from 
(3)  and ( 5 ) ,  using 4; as a finite element basis for u and v and approximating D as 
a piecewise constant discrete function. 

The test function (5) produces an upwinding effect, that is similar to the streamline 
Petrov-Galerkin methods, but with no need for an external adjustment of the nu- 
merical dissipation. To avoid any occurrence of the singular and counter upwinding 
effects, we propose to perform Ine(.) in obtuse elements as one-dimensional linear 
interpolation between nodes XI and Xn+l; here Xk,  (k = 1,. . . , n  + 1)  denote coor- 
dinates of the element a, nodes in ascending order along the X axis, that is aligned 
with Vu. In this way, VIne(eu) . Vu > 0 is guaranteed for (Vul > 0. 
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4. Test computations 

As a model problem we employ here the two-dimensional diffusion equation (2) in 
a rectangular domain (0.4pm x 0.4pm), with v = u, r = 0 and assuming constant 
D = 5.  10-15cm-2/s. It is useful for the practical analysis of discretization schemes 
since the exact differential solution is available [3] for 2-D Gaussian initid state 
(here % = 0.063pm, AR, = 0.021pm, A%, = 0.018pm and C,,, = 1020cm-3). 
The grid structure is selected as extremely coarse with N, = 106 and N,, = 70. 
The exact solution at t = 300s is shown in Figure 1. The gray and white areas 
denote the concentration ranges 10' < C < loi+' starting from i = 12 at the 
bottom. The discrete solutions obtained with the standard FE scheme (test LIN- 
FE) [4] and a new exponentially fitted FE scheme (test EXP-FE) are shown in 
Figure 2 and Figure 3, respectively. The result of the third test (EXP-FE(o)), 
that employs the grid structure consisting exclusively of obtuse triangles (PIe = 318 
and N,  = 176), is shown in Figure 4. For the more quantitative examination of 
the test computations, the relative error in the junction depth is analyzed for all 
above tests including also the exponentially fitted FD scheme (test EXP-FD) [I]. 
The progression of the junction depth error during diffusion and the dependence of 
the junction depth error on the substrate concentration are shown in Figure 5 and 
Figure 6, respectively. 

It could be observed that the standard FE scheme tends to significantly overestimate 
the amount of diffusion and the junction depth. On the other hand, with the 
exponentially fitted FE scheme, besides substantial improvements of the solution 
accuracy, the junction depth error shows a stable accumulation during diffusion, as 
well as uniform distribution in the wide range of the substrate concentrations. 

5. Conclusion 

The efficiency of the diffusion process simulation could be significantly improved 
with exponentially fitted FE schemes that allow coarser grid spacings then standard 
approaches. A new FE scheme has combined properties of the streamline Petrov- 
Galerkin and the divergence free upwinding methods. The superiority of a new FE 
scheme over its standard counterpart is demonstrated in the test computations with 
the known exact analytical solution. Unlike the exponentially fitted FD scheme [I], 
a new exponentially fitted FE scheme appears to be robust on grid structures with 
obtuse triangles. 
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Figure 1: The exact solution. 

Figure 3: The discrete solution in the 
test EXP-FE. 
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Figure 5: The progression of the junc- 
tion depth error during diffusion. 

Figure 2: The discrete solution in the 
test LIN-FE. 

Figure 4: The discrete solution in the 
test EXP-FE(o). 
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Figure 6: The dependence of the junc- 
tion depth error on the substrate con- 
centration. 
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