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Abstract 

During a numerical simulation usually many linear systems have to be solved. 
Using a direct method requires to factor each coefficient matrix separately. In 
this paper we present a hybrid approach which combines our supernodal direct 
solver with an iterative solver such that the iterative solver is called as often as 
possible to avoid the computationally expensive factorizations. 

1. Motivation 

In the last few years the research efforts towards efficient solutions of sparse linear sys- 
tems using direct or iterative methods have made significant progress. Unfortunately, 
it seems impossible to find an universal method which is optimal with respect to 
memory consumption and computational speed for all types of problems. Therefore, 
so-called hybrid methods have been considered which use a combination of usually 
stand-alone solution techniques. The idea behind such hybrid methods is that during 
the solution of a problem one can select. the method which is known to work best on 
a particular phase of the solution process whereas the normal approach uses only one 
method for the whole solution process. Our approach uses a combination of iterative 
and direct techniques to solve sparse structurally symmetric linear systems as they 
appear in numerical semiconductor simulation. 

2. The hybrid approach 

Numerical semiconductor device simulation involves the solution of the discretized 
device equations usually by a Newton approximation algorithm where each Newton 
step requires the solution of a linear system describing the coupled device equations. 
Especially during transient simulations a large number of linear system solves are 
necessary in order to  complete a simulation. The usual direct approach requires a 
factorization for each linear system to be solved. Since factoring the coefficient matrix 
is the most time consuming part of the solution process, it has to  be avoided as often as 
possible. Unfortunately, direct methods provide no means to  avoid the factorization. 
Consequently, we apply a preconditioned iterative method using a given factorization 
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call S U P E R ( A ( O ) , X ( O ) , ~ ( O ) )  - LU = L(O)U(O)  

3 = x(0).  6 = b(O) 

for i = 1,2, . . .  do 

.z = 116 - ~ ( ~ ) ~ ~ ~ / ~ ~ 6 ~ ~  
if z > threshold do 

call S U P E R ( A ( ~ ) , X ( ~ ) , ~ ( ' ) )  - LU = L ( % ) U ( ~ )  
2 = x(i). 8 = b(i) 

else 

call C G S ( A ( ~ ) , X ( ' ) , ~ ( ~ ) )  
if CGS fails do 

call S U P E R ( A ( ' ) , X ( ' ) . ~ ~ ~ ) )  - LU = ,gi)u(i) 
3 = x( i ) ;  6 = b(i) 

end if 

end if 

end for 

Algorithm 1: The supernodal hybrid solution approach. 

as a preconditioner. On the other hand, we are willing to invest a factorization, if 
convergence of the iterative procedure is slow. 

Algorithm 1 outlines the strategy of our hybrid approach which combines our sparse 
linear solver SUPER [I] with the preconditioned conjugate gradient squared (CGS) 
iterative method by Sonneveld [2] which is known to converge fast. As a precon- 
ditioner the most recent factorization is used. Initially, our sparse solver SUPER is 
called which solves the first linear system of the simulation process. Upon return from 
the direct solver the LU factorization of the coefficient matrix, the solution vector, 
and the right-hand side are saved in the data structures m, 3, and b, respectivelv. 
There are used to estimate the norm of the matrix difference - mJ1. All further 
linear systems are solved by either SUPER or CGS. The iterative process is started 
only if condition 

threshold 2 116 - A ( ~ ) z ( I / I I ~ I I  (1) 
is satisfied. Parameter threshold denotes an upper limit for the relative residual norm 
of the current coefficient matrix and the solution and right-hand side vectors from 
the last-exact solution. This relative residual norm is a measure how much the two 
vectors b and A("3 differ. If the relative residual norm is small, one can conclude that 
the numerical values of and do not differ too much so that CGS is expected to 
converge fast using as the preconditioner. If condition (1) does not hold, SUPER 
is called; otherwise CGS is invoked. On the other hand, even if condition (1) is 
satisfied, CGS is not guaranteed to  succeed. In this case SUPER is called to compute 
an exact solution. 

3. Preconditioned CGS 

Because we want to solve sets of linear equations with continuous parameter depen- 
dent coefficient matrices, we expect the iterative procedure to be invoked only for 
cases with eigenvalues of the iteration matrix sufficiently close to zero. If this is 
true, CGS will converge fast; otherwise, one observes large oscillations in the residual 
norm (31. This fact is used to interrupt the iterative procedure and to calculate a new 
factorization. Furthermore, we restrict the number of iterations by the parameter 
maxiter which is computed as the quotient of the measured times for a factorization 
and for the first CGS iteration (initially, maxiter is set to 1). After the first iteration 
maxiter is adjusted according to the measured times and the following formula: 

[TI Tf 
actorization maxiter = 

rrst-CGSiteration 
(2) 
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procedure CGS 
s = O ; r = b  
for i = 1 to maxiter do 

7 p ] = b  r 
if (pl = 0) return failure 

if z = 1 do 

' U = T ;  p = T  
else 

a = p1/p2; .U = T + 134 
2 p = u + S q t P P  

end if 

P2 = P1 
solve LUji = p 
6 = A@; a = pl/(bT6) 
q = u - a G  
solve L U G  = u + q 
u=AG; x = x + a G  
r=r-(11%' 
call check-convergence(i) 

end for 

end procedure 

Algorithm 2: The preconditioned CGS algorithm. 

In other words, maxiter is set to reflect how many CGS iterations can be executed, 
not exceeding the time required for a full factorization. 
After the necessary vectors and scalars have been computed, CGS requires to solve 
two linear systems. At this point, the preconditioner comes into play. Recall from the 
previous section that our preconditioner is the LU factorization of the most recent 
exact solve which is denoted as m. Consequently, only forward and backward sub- 
stitution are required to solve the systems mp = p and L U G  = u + q. This improves 
the computational efficiency of the CGS algorithm significantly. 
Eventually, the solution vector x and the residual r are updated. The relative residual 
tolerance z = Ilrlllllbll is then used to check convergence of the preconditioned CGS 
method. Depending on this value, it is decided whether CGS is considered to have 
failed, the solution is found, or another CGS iteration has to  be performed. 
At this point of the CGS algorithm, the method is considered to have failed in the 
following cases: 

1. z > maxnorm 
If the relative residual norm exceeds the predefined limit given by the parameter 
maxnorm, the CGS process is expected to converge too slowly. 

2. i = maxiter/2 A z > d m  
Parameter mintol specifies the accuracy z has to  achieve so that the linear 
system is considered as solved. If we have not reached an accuracy of 
after half of the iterations allowed, convergence is considered to  be too slow. 

3. i 2 maxiter A z > mintol 
If CGS has not been able to solve the system with accuracy mintol after maxiter 
iterations, the iterative process is stopped. 

These failure criteria are used to optimize the behavior of CGS in a way that per- 
formance loss is minimized if the CGS process has to be stopped and replaced by a 
direct solve. 

4. Performance of the hybrid solver 

Figure 1 displays the effect of our hybrid approach on the overall execution time 
for a 3D transient simulation of an IGBT. The simulation was performed on an 
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Figure 1: The effect of using a hybrid approach on the overall execution time for a 
3D transient simulation of an IGBT (grid size: 7790 points) on an IBhI RS/6000-590. 
The upper curve denoted with *, depicts the accumulated time when SUPER is used 
exclusively. The lower curve marked with + shows the accumulated simulation time 
using the hybrid approach. 

IBM RS/6000-590 workstation. The grid size of this device was 7790 points (i.e. one 
coupled linear system has .n = 3 x 7790 = 23370 unknowns). The upper curve, marked 
with *, shows the accumulated execution time of the simulation when only the direct 
sparse supernodal solver SUPER was used. Here, the simulation required more than 
60 hours wall clock time to complete. The lower curve, marked with f, displays the 
significantly smaller execution time of the same simulation using the hybrid approach. 
In this case, the simulation was finished after 16 hours wall clock time. This means, 
using the hybrid approach we were able to speed up the simulation by almost a factor 
of four! The reason for this speedup is that out of the 4819 linear systems solved 
during the simulation only 446 factorizations were required. The remaining systems 
could be solved by CGS. 
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