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MOSFET simulation is performed by direct self-consistent solution of the Boltz- 
mann, Poisson and Hole Contin~iity equations. To formulat,e the Boltzmann 
equation, a spherical harmonic approach has been developed which allows for 
expansion to arbitrarily high order. The self-consistent 2-dimensional MOSFET 
simulations incorporat,cd folir spherical harmonics. Sim~ilat,ion reslilts provide 
the distribut,ion F~inction for the ent,ire device, as well as substrate c~irrent, and 
average quantities including electron temperature, average velocit,y, and carrier 
concentration. 

1. Introduction 

The  Spherical Harmonic approach to solving the Boltzmann equation is being demon- 
strated as a viable approacll to  device sirnulation[l, 2, 31. We present here a new 2-D 
MOSFET sirllulation tool which employs a spherical harmonic expansion to deter- 
rninistically solve the  Boltzrriann transport equation (BTE) .  The  unique aspects of 
t,he approach are: (i) T h e  spherical harmonic formulation of the B T E  is performed 
to arbitrarily high order; ( i i )  A Scharfetter-Gummel type discretization has been de- 
veloped for the  BTE: (iii) Self-Consistent solution of the  BTE, Poisson and Hole 
Contirluity equations is achieved for the 2-D MOSFET structure; (iv) Results pro- 
vide the electron distribution function. electrostatic potential and hole-concentration 
for the entire device; ( v )  Frorri the  distribution function, average quantities includ- 
ing electron lernperature, average velocity, carrier concentrat,ion, as well as substrate 
current resulting from impact ionization, are obtained. 

2. The Device Model 

Our simulator is based on the following device rnodrl which consists of the  Poisson 
equation, the BTE for electrons and the current-continuity equation for holes: 
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where: f (k, r )  is the distribution function; n(r )  = - f (k, r)dk is the electron 
4a3 ' 1  

concentration; p(r) is the hole concentration; $(r) is the potential; We incorporate 
a nonparabolic band-structure, as well as acoustic, optical and intervalley phonon 
scattering, and impact ionization. 

3. Formulation of the 2-D BTE to Arbitrarily High-Order 

For steady-state 2-D MOSFET simulation, the BTE is a 5-dimensional integro- 
differential equation, and is therefore extremely difficult to solve. Using the SH 
expansion method, the BTE is reduced into a 3-dimensional system of differential- 
difference equations which is tractable for MOSFET simulation. We also employ the 
Hamiltonian transformation[3]. In contrast to other recent works, which were based 
on a low order SH expansion[l, 31, we have generalized the expansion approach and 
formulated the BTE to arbitrarily high-order SH accuracy[2]. With this approach, the 
momentum distribution function is expressed in terms of an infinite series of spheri- 
cal harmonics: f (r', l) = CEO ~ f n = - ,  f r (? ,  &)Krn(O, 4). Where fr (r', E)  represent the 
unknown expansion coefficients; and the spherical harmonics basis functions ~ " ( 0 , 4 )  
provide the angular dependence of the distribution function. To determine the co- 
efficients, fy(r ' , ,~) ,  we first substitute the above summation into the BTE. Next, we 
project the BTE onto each of the SH basis functions: 

By performing a similar projection onto each of the SH basis functions, an infinite 
system of coupled equations is generated for the unknown coefficients. We then 
take advantage of the SH recurrence relations to facilitate performing the projections 
indicated by Eqn. (4). The interesting result is that almost all of the infinite terms 
in each equation vanish identically due to orthogonality, and the coupling between 
equations is only through neighbors. Another extremely useful result is that each 
eauation has an identical form. The svstem can therefore be automaticallv generated 
td arbitrarily high order and then be" solved numerically. The equation fo; the 1, m 
SH coefficient is given below. The equation for any of the other SH coefficients 
is obtained by simply appropriately changing the value of the indices I, m to other 
allowed integers: 

where V(E) = -/my1, y1 = dyldc, and y represents the dispersion relation; the 
sum is over the 2 directions in the x - z plane; and we have constructed the operators 
ii to relate nearest-neighbor coefficients with the following definitions: 
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4. Numerical.Approach to 3-D Problem 

To solve the SH-expanded BTE for a 2-D MOSFET we use eqn. (5) to generate 
equations for the first 4 spherical harmonics. Next, we reduce these 4 equations in- 
to one second order self-adjoint differential-difference equation similar to that of[3]. 
We then perform a Scharfetter-Gummel type discretization on the resulting equa- 
tion. This yields a matrix which is well conditioned. We overcome problems typically 
associated with 3-dimensional calculations by using a fixed point SOR iterative so- 
lution technique. This method avoids direct solution of large matrix equations (and 
is easily parallelized). The Poisson equation is solved directly in 2-D using Gaus- 
sian elimination for banded matrices. The Hole-Continuity equation is solved using 
Slotboom variables and the fixed point iterative method. The Boltzmann-Poisson- 
Hole-Continuity system is solved self-consistently using a decoupled Gummel-type 
iterative process. 

5 .  Simulation Results for a 2-D MOSFET 

We performed example calculations on a 0.5pm channel length nMOSFET. We show 
example results for an applied bias of Vd, = 3V and V,, = 3V. Fig. 1 shows the 
resulting electrostatic potential which has been calculated self-consistently with the 
distribution function. In Fig. 2, the electron concentration within the device, which 
is obtained by numerical integration of the distribution function, has been plotted. 
Fig. 3 shows the energy distribution function along a plane at 0.001pm below the Ox- 
ide/Si interface. It can be easily seen, by the distribution function's non-Maxwellian 
form, that electrons were heated up when traveling toward the drain region. This 
quantifies the hot-electron concentration a t  the channelidrain edge, which is the re- 
gion that generates reliability problems. Fig. 4 shows the distribution function along 
a plane in the substrate. Clearly, the distribution function is Maxwellian at this depth 
in the device since current densities and fields are very small. Fig. 5 shows the concen- 
tration of electrons and holes generated per second by impact ionization. These values 
are obtained by directly integrating the impact-ionization collision term in the BTE. 
Fig. 6 shows the substrate current as a function of applied bias. The curves were 
obtained by integrating the impact-ionization collision term over the entire energy 
and real space domain. 
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