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Abstract 

We present a hierarchical CAD environment for realistic silicon device simula- 
tion, combining the utility of process, drift-diffusion/hydrodynamic, and Monte 
Carlo simulation in a unified platform. Monte Carlo simulation results are pre- 
sented for the cases of an NIN diode and a 40nm LDD-MOSFET, using infor- 
mation given by a hydrodynamic pre-processing step. In addition we compare 
drift-diffusion, hydrodynamic and Monte Carlo results for an 0.5pm MOSFET 
whose geometry and doping profiles were generated by a 2-dimensional process 
simulation. 

1. Introduction 

The Monte Carlo method of charge transport simulation offers the possibility to 
extract information about all quantities derivable from the semiclassical distribution 
function, whose accuracy is limited explicitly by statistical convergence and implicitly 
by the quality of the physical models. To date, much effort has been devoted to 
improving models for band structure and scattering mechanisms, such as electron- 
phonon scattering [1, 2, 3, 41, impact ionization [5, 6, 71 and other carrier-carrier 
scattering [8, 91. However, the practical usefulness of Monte Carlo device simulation 
has not entirely lived up to its promise, as evidenced by the observed propensity to 
simulate simplified device structures. 

2. Degas - A Combined Hydrodynamic and Monte Carlo Simulator 

A unique device simulation environment has been developed which unites the capabil- 
ities of process, drift-diffusion/hydro, and Monte Carlo simulation into a single plat- 
form. One may use D I O S - ~ ~ E  [lo] to begin with a process simulation. Drift-diffusion or 
hydrodynamic simulations can be performed with the mixed-mode multi-dimensional 
device simulator D E S S I S - ~ ~ ~  [ll, 121 as a preprocessing step. The full-band Monte 
Carlo simulator VEGAS was embedded into D E S S I S - ~ ~ ~  by a window technique, which 
is called D E G A S - ~ ~ E  [13]. The domain of the Monte Carlo simulation may be chosen 
either as the entire device, or as a rectangular sub-domain. When the Monte Carlo 
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simulation is invoked, it uses the precise device structure which has been generated 
by the process simulation. Former implementations of the window technique used 
the drift-dzffusion information as initial and boundary conditions [14, 15). In this 
work, carrier densities, velocities and temperatures are extracted from hydrodynamic 
simulation as calculated by D E S S I S - ~ ~ ~ ,  and passed to VEGAS for use as initial and 
boundary conditions. Monte Carlo simulation may be performed self-consistently or 
using a frozen field provided by D E S S I S - ~ ~ ~ ,  either in one or two dimensions. 

3. Examples 

Figure 1: 0.5pm nMOSFET with arbitrarily shaped Si-SiOz interface from process 
simulation. 

We present three examples: a 0.5pin MOSFET, a 40nm MOSFET and a 0.5pm NIN 
structure. 

The 0.5pm nMOSFET was fabricated and measured by Fujitsu. The process was 
simulated with D I O S - ~ ~ ~ ,  and resulted in a non-planar Si-Si02 interface (Figure 1). 
Figure 2 shows that the drift-diffusion ansat,z completely fails in this example. 

2.0 3.0 
Time [ps] 

Figure 2: a)  Drain current at V,,,b,=OV and Vgat,=2V. (circles: experiment, solid line: 
drift-diffusion, dashed line: hydrodynamic, triangles: Monte Carlo) b) Convergence 
of terminal current during the Monte Carlo simulation at Vdrai,=4.875V. 

The hydrodynamic simulation leads to good agreement with the measurements until 
about 4V drain voltage. Only the Monte Carlo method predicted the breakdown. 
The terminal currents are evaluated by a powerful domain integration technique. The 
terminal current convergence as a function of simulation time is shown in Figure 2.b. 
After less than two picoseconds convergence is obtained also for the substrate current. 

The second example is a 40nm LDD-MOSFET. In Figure 3 the hydrodynamic elec- 
tron temperature and the Monte Carlo electron average energy are compared. The 
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rectangle denotes the boundary of the Monte Carlo simulation domain. While the 
hydrodynamic solution shows the highest temperatures at the highly doped drain 
edge, the largest Monte Carlo energies are at the bottom of the LDD implant and the 
region of hot carriers is much more extended into the drain. 

Figure 3: Comparison of electron temperatures computed by the hydrodynamic and 
the Monte Carlo method. (Vg,,,=2V, Vdrain=4V, V,,,b=OV) The plots on the right 
are zooms into the drain region. 

The third example consists of an NIN structure with doping concentrations of 5 ~ 1 0 ' ~  
and 2 ~ 1 0 ' ~ c m - ~ ,  where the intrinsic region has a length of 0.5 pm. In Figure 4 the 
need for Monte Carlo simulations is demonstrated by the impact ionization rate of 
the hydrodynamic in comparison with the Monte Carlo result. The hydrodynamic 
rate, a function of the carrier temperatures, cannot satisfactorily account for the 
non-locality needed in this example. Even when hydrodynamic temperatures and the 
average energies from Monte Carlo agree quite well, more detailed information about 
the non-local hot electron distribution is needed than the hydrodynamic formulation 
can model. 

--- Monte Carlo 
..--- Electric Field 

Figure 4: Carrier temperatures/average energies, avalanche generation, and electric 
field a t  10V applied bias in the NIN example. 

The coupling which has been presented between the hydrodynamic ansatz and the 
Monte Carlo method within the same software environment enables the user not 
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only to simulate deep submicron devices very accurately, but even to verify and 
adjust parameters of the hydrodynamic model. The mixed-mode and multi-device 
capabilities of D E S S I S - ~ ~ ~  are not limited. 
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