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Abstract 

To represent the valence bands of cuhic semiconductors a coordinate transfor- 
mation is proposed such that the hole energy becomes an independent variable. 
This choice considerably simplifies the evaluation of the integrated scattering 
probability and the choice of the state after scattering in a Monte Carlo pro- 
cedure. In the new coordinate system, a numerically given band structure is 
expanded into a series of spherical harmonics. This expansion technique is ca- 
pable of resolving details of the band structure at the Brillouin zone boundary 
and hence can span an energy range of several electron-volts. Results of a 
Monte Carlo simulation employing the new band representation are shown. 

1. Introduction 

Efforts on numerical modeling of hot carrier transport published to date  deal mainly 
with hot electrons. One reason might be that for electrons some important trans- 
port properties are readily revealed by assuming simple effective-mass band models. 
For holes, however, an effective mass approximation is poor even very close to  the 
I?-point. Non-parabolicity is very pronounced and cannot be  described by simple an- 
alytic expressions. The  warped-band model [3], which is essentially parabolic, cannot 
be implemented in the Monte Carlo technique without additional simplifications 121. 

The representation of the valence bands we present is specifically tailored to the  needs 
of Monte Carlo transport calculations. These needs include efficient calculation of the  
scattering integrals and a straightfor\vard algorithln for the choice of the  s tate  after 
scattering. 

2. Representation of the Bandstructure 

To obtain the  total scattering rate  the transition probability given by Fermi's Golden 
rule has t o  be integrated in the  three-dimensional k-space. Because of the energy- 
conserving 6-function in the transition probability a coordinate transformation is 
desirable such that  energy becomes one of the integration variables. Assume that  
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the band structure is given in polar coordinates: t = E ( k , f l ) .  We now introduce 
a coordinate transformation ( k ,  0 )  + ( t ,  0 )  by inverting the function E ( k ,  0 )  with 
respect to  k .  The  result of such an inversion is a function IC describing equi-energy 
surfaces in k-space: k = X ( E ,  0 ) .  Inversion of a function is possible only in an interval 
where the  function is monotonous. By inspection of the full band structure one finds 
that  both the  heavy hole and split-off bands can entirely be represented by such 
functions IC.  Above a hole energy of E x ( 3 . 0 4 e V )  inversion of the light hole band is 
no longer unique. 

In this work, we represent the  function K: as a series of spherical harmonics. 

Derivation of the scattering rates is considerably eased by taking the  third power of 
IC as t h e  function to be expanded. For symmetry reasons non-vanishing coefficients 
only exist for even values of 1 and for m being a multiple of 4. With (1) a set of 
functions ah,,,(t) contains the n~hole band structure inforlnation. 

The  density of states of a band represented by (1) is solely determined by the  zero 
order coefficient. 

1 d 
gb( t )  = -- u ~ , o o ( E ) ;  b = E I ,  L. SO 

4n3 d t  ( 2 )  

3. Scattering Rat,es 

Wihthin this frame~vork: me derived the scattering rates for acoustic deformation 
potential ( A D P )  scattering in the  elastic approximation. optic deformation potential 
( O D P )  scattering and ionized impurity scattering ( 1 0 s )  in the Brooks and Herring 
formalism. 

z2~r1'1e4 1 cc 
x f y N ( E ,  Q )  = 

' d 
" ( t )  za,,~,(t)P,"(cos 6 )  cos rn@ 

~ T ~ W E O G ) '  ( 2 k ,  ( k 3 ) ) 2  m =O 

All these mechanisms induce both intraband and interband transitions. Other  than 
for electrons, overlap integrals ca~iliot be neglected for holes. Tlie used approximations 
are of the form G;; = $ ( I +  3 cos2 B )  and Gij = sin2 8. Tlie Coulomb scattering rate, 
which additionally depends on the solid angle of the wave vector: is expressed as a 
series of spherical harmonics. In Eq. ( 5 ) :  ( k , )  denotes an average value over the solid 
angle, which is defined as ( k , )  = ( & a J , o o ( ~ ) ) " 3 .  The  coefficients h ; , ( t )  being a result 
of integration can be expressed in terms of Legelidre functions of the  second kind. 

The distribution functions of the  solid angle after scattering are given as spherical 
harmonics series. In a Monte Carlo procedure. the after scattering s tate  can be chosen 
according to these distributions by a simple rejection tec1iliiclue. 
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4. Results and Discussion 

In this work, we use the series expansion (1) to represent the heavy and light hole 
bands up to €hole = 3.04eV, which is the band-energy at the X-points. The numerical 
band structure has been computed by a nonlocal empirical pseudopotential method. 

The functions ab,lm(c) are represented numerically by means of a finite element method. 
To ensure continuous derivatives shape functions of third order have been chosen. The 
unknowns associated with the nodes of the energy grid have been deterinined by a 
variational approach. From numerical band data the functions ab,l,(~) can well be 
computed for non-vanishing hole energies, but not for an energy of zero. To obtain 
the ab,lm(0) we expand the expression for the warped band approximation. Iil this 
way, our band model combines the warped band approximation in the vicinity of 
the r-point where not enough numerical data points are available, and the numerical 
band structure for higher hole energies. 

Figure 1: Comparison of numerical band structure (symbols) and the spherical har- 
monics expansion (lines) for the heavy hole (left) and the light hole (right) bands. 

Figure 2: Cross section through the heavy hole (left j and light hole (right) bands from 
0.5eV to 3.0eV in 0.5eV steps. The surrounding octagon indicates the boundary of 
the Brillouin zone 

Fig. 1 shows the band diagrams for the bands under consideration. Symbols refer to 
the data points of the numerical band structure, solid lines to the series expansion. 
In Fig. 2 equi-energy lines are plotted in k-space. It turned out that at  low energies 
less harmonics are required than at high energies. Therefore, we make the number 
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of harmonics a function of energy. For instance, for the light hole band l,,, = 20 at 
0.5eV and I,,, = 60 at 3.0eV. The weak ripples at  3.0eV indicate that some higher 
order harmonics are still missing. In general, the higher the number of harmoncis, 
the better the details of the band structure can be resolved at  the boundary of the 
Brillouin zone. On the other hand, for hole energies below EL (1.27eV), where the 
band structure does not yet touch the zone boundary, a lower value of l,,, is sufficient 
(typically l,,, 5 28). 
As can be seen in Fig. 2 the series representation provides states outside the first 
Brillouin zone which do not exist in reality. These artificial states yield an increased 
density of states and hence increased scattering rates. In the Monte Carlo procedure, 
scattering events to such artificial states outside the Brillouin zone are rejected and 
self-scattering is performed instead. 
In Fig. 3 the simulated drift velocity is compared to measured data [I]. Fig. 4 depicts 
the average hole energy as function of the electric field. In this simulation, the split-off 
band has been neglected. 

Figure 3: Comparison of siinulat,ed and Figure 4: Average hole energy as func- 
measured [I] hole drift velocities as tion of an electric field in (100) direction 
function of an electric field in (100) di- at 300I<. 
rection at  3001<. 
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5. Conclusion 
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A new method to represent numerical valence band data for Monte Carlo transport 
calculations has been developed. A function basically describing equi-energy surfaces 
in k-space is expanded into a series of spherical harmonics. Depending on the energy 
range accounted for and the number of harmonics invoked the model can be considered 
either as an improved analytical band model or as a full-band model. In this work 
we demonstrated the full-band capabilities for hole energies up to Ex (3.04eV). 
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