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Abstract 

In the context of 2-D and 3-D unstructured mixed-element meshes, a new 
method of recovering vectorial fields and currents in multidimensional simu- 
lation is introduced. The new method, called the method of edge elements, 
directly interpolates the projections of the vectors on the edges of an element 
into its interior. The new method is compared to two other recovery methods 
on the basis of resolution, consistency, and implementation ease. 

1. Introduction 

In the numerical simulation of semiconductor devices, the vectorial electric field and 
current density field (together: fields) are required throughout the  domain of simu- 
lation to  compute various physical models, such as mobility, impact ionization, and 
Joule heating. In finite-box simulations, the discretization and solution do not unique- 
ly define the  fields off of the edges joining the  nodes. The  fields are reconstructed 
from the  projections of electric field or current density along the edges. 

T h e  recovery method should not only define a unique electric field and current density 
throughout the domain, but it should also specify how the  recovered vectorial quan- 
tities should be used in the discretized equations. In general the parameter models 
may require the  vectorial quantity along a n  edge, within a n  element, or a t  a node. 

For accuracy, the  ideal recovery method should be  of high resolution and be  consistent 
wit.h the  model and its discretization. Resolution measures the capability t o  distin- 
guish between fields a t  adjacent locations. Inconsistency will introduce additional 
numerical errors. The  recovery method should be  consistent with the  approximations 
of the Sharfetter-Gummel discretization, and the projections of the recovered field on 
the element edges should reproduce the original data. 

For computer efficiency, the  ideal recovery method should be easy t o  implement and 
be amlicable to  any 2-D or 3-D, unstructured. and mixed-element mesh. The  im- . 
plementation of the method should be  computationally cheap, including calculation 
of the  dcrivativcs of the ficld for the Jacobian. Often, in order to apply a method 
only suitable for simplex meshes, nonsimplex elements are arbitrarily subdivided into 
simplices. However, i t  turns out tha t  the numerical solutions are sensitive t o  the  way 
elements are split. Splitting the  elements introduces new edges ij with zero Voronoi 
cell areas A,,, from which the field along the edge cannot be  uniquely determined. 
Errors introduced in calculatine: the fields will feed back into the solution via the  

u 

physical models, which may compromise the  overall accuracy of the  modeling effort. 



I). C. Kerr et al.: Recovery of Vectorial Fields and Currents in Multidimensional 

2. Method of Edge Elements 

The method of edge-elements (EEM) proposed below directly interpolates vectorial 
values defined on the edges of an element into the interior of the element. The vectorial 
interpolant J k  of the edge values Fij into the interior of element k is 

where e;j is the basis function of edge ij and Ik is the set of edges of the element. 
The edge basis function is defined by 

where dij is the length of edge ij and A, is the scalar finite-element shape function. 
The shape function X i  for the element takes the value 1 at node i, the value 0 at 
all other nodes, and is linear between them. The basis function has the following 
characteristic properties: the tangential component of eij along the edge i j  is equal 
to one, while the tangential components along all other edges are equal to zero. 
Reconstruction of the field using edge elements yields a non-constant vector function 
defined on the element which has the following properties: (1 )  The projection of the 
edge-element reconstruction on each edge of the element reproduces the original data. 
(2) The tangential components of the field are continuous from one element to the 
next. (3) The field is divergence-free. Property (2) is useful at internal interfaces 
between materials of different permittivities. Property (3) is consistent with the 
approximations made for the SG discretization of current. 

To simplify the edge-element calculat,ions, a coordinate transformation is applied to 
transform each element into its standard position. The coordinate transformation 
for an element with nodes at {ro , r l , .  . .) into standard position is defined by r' = 
A-'(r - ro),  where A is the Jacobian of the transformation. The edge elements 
transform according to 

eij(r) = (A-l)Teii(r'), (3) 

where the primed coordinates refer to the element in standard position. 

Although the definition of the edge elements can be applied to non-simplex elements, 
the results are inaccurate due to the quadratic component in the direction normal to 
the edge. To rectify this, the modified edge-elements are introduced by removing one 
of the factors from each squared term. In this form, edge elements are suitable for 
2-D and 3-D nonsimplex elements. The standard and modified 2-D edge-elements in 
standard position are listed in Table 1. 

The vector quantity at a location required for a parameter model may be computed 
by averaging the interpolant function. For example, analytically averaging over the 
element k results in 

k 1 < J  >=--I ~ ~ d v .  
V k  V k  

(4 )  

where V k  is the volume of the element k. On the other hand, the space-varying 
interpolant function may be directly evaluated at the location of interest. 

3. Method of Least-Squares Fitting 

The method of least-squares (LSM) fitting treats the edge values in an element as 
measurements of the field. The recovered field is a constant field within the element 
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Table 1: The two-dimensional edge elements in standard position, each normalized by 
its length. A modified edge-element is shown in the vector plots, with node numbering 
indicated. 

that minimizes the error along each edge, that is, the field Jk that minimizes f ( J ~ ) ,  

Standard EE Modified EE Element averaged 

where aij is a unit vector from node i to node j .  The LSM can be applied uniformly 
to edge-, element-, or cell-field recoveries. 

Element a, a~ a a, 
Triangle 

eo1 1 - Y  x 1 - y  x 
e02 Y 1 - x y 1 - x 
el2 - Y x -Y x 

Rectangle 
eel (1 - y)2 0 1 - y 0 
e02 0 ( l - ~ ) ~  0 1 - 5  
'313 0 5 0 X 

e23 y2 0 Y 0 

4. Method of Corner Averages 

<J:>= i(2dolFo1 + dozFoz - dlzF~z)  

<J;>= i(dolFol t 2dozFoz + d ~ z F ~ z )  

<J:>= i(dolFol + dz3Fz3) 

<Jt>= i(dOlF01 + d23F23) 

The method of corner averages (CAM) partitions the domain into "corners" and 
calculates a constant vector value in each corner. The volume xk associated with the 
corner of element k at node i, where node i belongs to the element, is defined by the 
intersection of element k with the Voronoi cell at i. The corner value J t  in yk is 
calculated by solving the system of equations 

J ! . A  t ,  -F..  - %,, j E N!, (6) 

where Nk is the set of nodal neighbors of i within element k. 
The field at a location required for a parameter model is computed through a suitably 
weighted average of corner values. The original CAM [I] was proposed for triangular 
or prismatic elements, and it is difficult to generalize their averaging scheme to other 
elements. Here, a more general averaging scheme is proposed which is suitable for 
other elements. The generalized average is defined by 
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where the indices (i, k) take on different values depending on whether the average is 
for a node, an element, or along an edge. 

5 .  Discussion 

The EEM was compared to the LSM and the CAM. On the basis of resolution, the 
EEM is clearly superior since it can distinguish any two arbitrarily close points. The 
other methods produce fields which are constant over various zones. On the basis of 
consistencv. the EEM is consistent with the SG discretization. The recovered field is " ,  

also consistent with the solution, since the projections of the field along element edges 
reproduces the original data. However, the other methods do not have this property. 
On the basis of implementation ease, the EEM and LSM are computationally cheaper 
that the CAM. The work involved in recovering the field using the EEM or LSM 
involves evaluating a polynomial function in the number of edges and multiplying by 
a matrix for the coordinate t.ransformation. 

A detailed comparison between the element-averaged EEM and the LSM was made, 
since it can be argued that the LSM produces fields which are optimum. It was found 
that the two methods yield identical results for the rectangular faces of any element, 
so the differences were evaluated in triangular faces. For an equilateral triangle, with 
nodes at (0, O ) ,  (1, O), and (112, &/2), the recovered fields are identical and given by 

When the upper node was moved upward, from (1 / 2 , 8 / 2 )  to (1/2,10 + &/2), the 
methods produced: 

These methods differ in the reconstruction of the x-com~onent of the field. Which is 
correct? The EEM uses the geometry of the figure when averaging over the area of 
the element. Longer edges dominate more of the figure and therefore weigh propor- 
tionately more in the averaging. On the other hand, the LSM ignores the geometry 
of the figure in which the field is computed; only the relative orientation of the mea- 
surements matters. In the elongated triangle, the upper legs are rotated toward the 
y-direction and thus the influence of these legs on J,k is smaller. This means that 
the LSM is inaccurate for element. reconstructions. The use of the LSM should be 
restricted to field reconstructions where all the measurements are collected at one 
point, for example, to reconstruct the field at the center of the Voronoi cell. 

In conclusion, the newly proposed method of edge-elements is an accurate and efficient 
vectorial field reconstruction method. The EEM has been installed in SIMASTER, a 
general purpose 2-D and 3-D device simulator using unstructed meshes [2]. The EEM 
has proven effective in many different types of simulations. 
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