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Abstract 

We investigate qualitative properties of the drift-diffusion model of carrier 
transport in semiconductors when a magnetic field is present. At first the 
spatially continuous problem is studied. Essentially, global stability of the 
thermal equilibrium is shown using the free energy as a Lyapunov function. 
This result implies exponential decay of any perturbation of the thermal equi- 
librium. Next, we introduce a time discretization that preserves the dissipative 
properties of the continuous system and assumes no more than the naturally 
available smoothness of the solution. Fi~ially, we present a space discretization 
scheme based on weak and consistent definitions of discrete gradients and cur- 
rents. Starting with a fundamental result on global stability (dissipativity) of 
the classical Scharfetter-Gummel scheme (without magnetic field), we adapt 
this scheme with respect to magnetic fields and study the M-property of the 
associated matrix. For two dimensional applications we formulate sufficient con- 
ditions in terms of the grid geometry and the modulus of the magnetic field such 
that our scheme is dissipative and yields positive solutions. These conditions 
cover fields up to Jb(p, -- 0.5 for very fine grids. This means approximately 200 
Tesla for Silicon. Sufficient for some typical semiconductor sensor applications. 
The grid requirements might become prohibitive for large magnetic fields and 
complex three dimensional structures. Our techniques of defining discrete cur- 
rents can be applied to similar situations, especially if projections of currents 
are involved in model parameters. 

1. Introduction 
The main issue of this paper is to provide the community, concerned with device 
simulations, with some of the results published in [I]. Space restrictions allow for the 
main results only, proofs, details and comments have to be omitted. The paper is 
organized to  state the results mentioned in the abstract. 

2. The spatially continuous problem 
Let S = (0, T) be a bounded time interval and let R c lRN, 2 < N 5 3, be a bounded 
Lipschitzian domain. Set Q = S x R. Suppose that  a R  = rD U r, rD n r # 0, where 
rD is closed and has a positive surface measure. Let us consider the following system 
of equations -V.eV!P= f + u 2 - u l i n Q ,  
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The physical meaning of the various quantities is the following: 9 - electrostatic 
potential, u, - carrier densities, @, = Q + q,logu, - quasi-Fermi potentials, c - 
dielectric permittivity, f - density of impurities. R - recombination / generation rate 
R = r (x ,  u l ,  u2) ( l  - u1u2), J,, j ,  - current, densities with / without magnetic field, 
b - the magnetic field vector, p, - carrier mobilities (-) ( x )  2 pb > 0. We 
assume: 1 bl, 6 ,  pv, f E L,(R), 0 < 6 < €0 ,  r = r ( x ,  u1, u2) is continuous with respect 
to u, and measurable with respect to x .  The growth condition 0 5 r(x ,u l .  212) 5 
r l ( l  +lull+ 1u21), r1 =const < m holds. 
Using the matrix B, = &(I + b bT - q,bx), the last line in (1)  yields 

J, = B,j,. (2)  
We complete the system ( 1 )  by the initial conditions u,(O, .) = uUo(.) in R and the 
thermal equilibrium boundary conditions 

9 = \ Z I D 1  21, = e - q v Q ~  on S x r D ,  ( 3 )  
n . c V 9  + a(Q - 4 r )  = 0,  a > 0,  n . J ,  = 0 on S x r, where u,o E L,(R), 
Q D  E Lm(rD) ,  Q r  inL,(r) are given and n is the outer unit normal with respect to 
Gamma. 
2.1. Stability of the thermal equilibrium 
Let. 9* E H L ( f l )  be the (unique weak) solution of the boundary value problem 
-V . cV9  = f + e-' - e' in R, 9 = on rD, n . V 9  + a(* - Q r )  = 0 on I?. 
Definition 1 The triple (\Ilf ,u;),  U C  = e-qv", is called the thermai equilibrium 
solution; the functionals 
F(Q,  u,) = J[C, u,(log $ - 1) + u:] dR+ ;111@ - * * 1 1 1 2 ,  
with lllh1)12 = J c1VhI2 dR + J a h 2  d r ,  and 

I $ b ( q , ~ u )  = S [ m  xu ~ u ~ u ( ( V @ u ) 2 + ( b ' ~ ~ u ) 2 ) + ~ ( ~ ,  ~ 1 , ~ 2 ) ( ~ 1 ~ 2 - 1 )  l o g ( ~ 1 ~ 2 ) ]  df l ,  
db 2 0 are the free energy and the dissipation rate, respectively. 
Proposition 1 Let ( Q ,  u,) be a solution of (1) - (3). Then the function L(t)  = 
F ( 9 ( t ) ,  u l ( t ) ,  u 2 ( t ) )  satisfies: 0 5 L ( t )  = L(0) - Ji db ds. 
Remark 1 By proposition 1 the function L decreases strictly monotone as long as 
the dissipation rate is nonzero. Thus we can conclude that L(u( t ) )  -+ 0 for t -+ m. 
Moreover, L turns out to be a Lyapunov function of the system and indicates global 
stability of the thermal equilibrium. 
The decay rate towards the thermal equilihium can be estimated: 
Corollary 1 Let (9 ,  u,) be a solution to ( I )  - (3) with Il@(t)ll, 5 k < rn Vt > 0 .  
Then ( Q ,  u,) tends to the thermal equilibrium solution (Q*,  u t ) .  Moreover, it holds 

)3 llm - fill2 + Y I ( t )  - * * I l l 2  5 4 e - l L ~ ( 0 )  -t 0, t 4 m. (4) 
~ r o ~ o s i t i o h  2 Suppose r ( x ,  ul ,  u2)  2 ro = const > 0 and cr = 0. Then the function 
L decreases ezponentially. In particular, we have L(t)  5 e - j ' t ~ ( ~ ) .  
The proposition shows, that the assumptions of the corollary can be cancelled in 
special situations even for N = 3, the constants A, X are given in [I] .  

2.2. Time discretization 
Let S = UjS j ,  Sj  = [t jW1,  $ 1 ,  rj := t j  - > 0, to = 0. According to the backward 

. . 
Euler's scheme, we discretize the system as follows -V.cV93 = f +u; - U: in R, j = 

.3,-4-' 0, 1 ,  2, .  . . , +q,V.  Jjv = Rj in R, j = 0,1,2, .  . . ,  u! = U,O. 
T3 

Proposition 3 Let (Qj, u;) be a solution of the time discrete system. Then the 
discrete function V' = F(@, u;) satisfies 0 5 LJf l 5 LJ LO - c;,, Tld6, 
d', = db(9', u;) > 0. 
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3. Space discretization 
For the space discretization we use i"i-dimensional simplices (elements) E? such that 
C2 = u1E?. A simplex E = E y  can be represented by the N x ( N  + 1) matrix of its 
vertex coordinates. 

where P is an extension of P by elements of the null space of DT (see below, P is 
nonsingular for any nondegenerated simplex). xT = (XI,;, xz,i,. . . , X N , ~ )  is the vector 
of the space coordinates of the vertex i of the simplex. The volume integral of a 
function is approximated by the corresponding sum over the Voronoi volume elements: 
S f  d o  - C m  fmlvmll  C m  IVmI = InI. 
The contribution of the recombination R to the discrete dissipation rate is given by 

drec := CC IVmI(R@v)(xm) = C IVmIr ( ~ 1 ~ 2  - l ) l o g ( u 1 ~ 2 ) ( ~ m )  2 0. (5) 
u m m 

3.1. Discrete Gradients 
In order to discretize (1) - (3) we need projections of the currents onto the coordinate 
axes. Let D be a ( N  + 1) x ( N  +1) matrix such that J V u . V h  d E  - (Du ,  h )  = hTDu.  
where (., .) is the scalar product in RNC1. By means of D we define the discrete 
version 9 of V by Q = h P D .  Hence the projection of v u  onto the x-axis is given 

by ( ~ u ) ,  = & (Du ,  x), gT =   XI,^, . . . , XI,N+I). 
Lie suppose the matrix D to satisfy the following conditions: 
(i) D i s  ( N + l ) x ( N + l )  mat,rix, (ii) r a n k D = A T ,  l T D = O ,  l T = ( l  , . . . ,  I ) ,  

(iii) (Du,  h )  = IEl ( v u ,  Qh),  tr u ,  h .  

Remark 2 The 'projection property' (iii) is the key for introducing consistent cur- 
rents j on simpleces E in the next sections. (ii, iii) ensure the strict balance of discrete 
contact currents jk defined by jk = El IEIJ (j, 9 h k ) .  Where the h k  are suitable test 
functions: hir, = 1, hlr, = 0, j # k ,  h E H1(R) and r D  = U;r;. 

Lemma 1 The matrix D is uniquely defined by (i) - (iii). Moreocer, D is the finite 
element matrix ('or piecewise linear polynomials on the simplex) of the Laplacian. 

Hence the finite element discretization satisfies: ( D u ,  h )  = I E ! ( ~ ~ u ,  Qh) .  Consistent 
currents can be defined via: 
Lemma 2 Let A be a ( N  + 1) x ( N  + 1) matrix such that lTA = O and rankA = N.  
Then tr u, h E RNtl (Au, h )  = ! ~ l ( j , ,  q h ) ,  where j, = L P A u ,  O h  = & P D ~ .  IEI 
3.2. Box discretization methods 
The box discretization in principle approximates the Laplacian on the Voronoi volunle 
Vm. Interpreting this with respect to the elements, one gets an discrete approximation 
of the Laplacian J Vu . Vh dEl = (Aboxu, h )  on El, too. For N = 2 the matrices Aboz 
and D coincide, in general we have for AT > 2: h A b o Z p  PT Abox # Abox. However, 
because of Lemma 2 and (Abozu, 1)  = 0, we can define consistent currents and gradi- 
ents on E by: j, = & PAboxu, Qh = h P D h .  Since time derivatives, recombination 
and right-hand sides can be discretized as stated above, it remains to look for discrete 
approximations of expressions as Ve'Vv, where v = e-a is the Slotboom variable 
related to u l .  We have to preserve the Scharfetter-Gummel scheme - essentially an 
approximation of J(a(@)Vv) . (Vh) d E  x (AsGvl h ) ,  lTAsG = 0, ASG = AgG for a 
strongly varying coefficient a(@).  The index SG stands for Scharfetter-Gummel and 
Slotboom variables. This leads t,o the following representation of ASG on the simplex: 

A ~ ~ V  = G ~ Y G ~ ~ V .  ( 6 )  
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Here Y is a weight matrix, symmetric positive definite and diagonal, G N  is a n, x n, 
matrix (n, the number of edges, n, the number of vertices, for details see [I]). yk := 

x- 
s k  = p, eij 1 b( loga (~ i ) , loga (Wj) ) ,  k = 1 , .  . . ,n., & ( s l y )  = ex8(x - Y) = e-v-r-z , 
&(x, y) > 0, 1x1, IyI < cc is related to  the Bernoulli function P(x) = > 0. For 
a = const holds ASG = Abox. Consistent currents on E are defined as before: (we still 
write j, because u = e+v introduces - a diagonal transformation of the matrix and the 
variable only) j, = &PAsGv, V h  = 'PDh. 

IEl 
Definition 2 The discrete dissipation rate (except recombination) on a simplex E 
for one carrier density (here the electrons) is (comp. definition 1) 
dOE := - a T A S ~ e x p ( - a ) .  (The recombination contribution dreCE > 0 is given by 
(5) with the sum restricted on E. )  

Proposi t ion  4 The Scharfetter-Gummel scheme (6) is dissipative, i. e. , doE 2 0, 
for any state of the system without magnetic field. 

3.3. Magnetic field 

We are looking for a matrix Am,, approximating J J . V h  d E  E (Amagv, h), lTAmag = 
0, Am,, # A:,,. Here J = J ( b )  denotes the continuous current with magnetic 
field. J ( b )  is related to j = J ( 0 )  by (see (2), the subscript v = 1 is deleted again) 
J, = B j,. We defined the discrete version of j, by j, = &PAscv, lTAsG = 0. 
In view of Lemma 2 we make an analogous ansatz for the discrete version of J, 

0 0 J, = &PA,,,v, lTAmag = 0 This yields PA,,, = B P A ~ ~ ,  B := ( ) . 
Hence Am,, = P - ~ B P A ~ ~ .  Since P-' is known, this is the desired expression for 
Amag . 
R e m a r k  3 J, has to fulfil the same boundary conditions as j,. The scheme is current 
conservative by construction. 
Introducing for N = 2 c; := cot a;, a; inner angles, some algebra yields: A,,, = 
&ASG + &Amag, &Amag = &GT diag[cot(a;-l)]SLASc, (S1 is the shift matrix). In 
comvonents this reads 

Proposi t ion  5 Assume y; > 0 and (i) Ib.11 cot ail < 1, (ii) -yi(l t b , ~ ; + ~ )  - 

Yi+l(~+l  + c;+2)bz < 0, (iii) -yi(l - b,c,) + y,+z(c, + s+z)bz < 0. 
Then A,,, is a weak M-matrix. 
Proposi t ion  6 The change in the dissipation rate due to the magnetic field on a 

triangle E can be estimated by 16db E I  5 max;.j ~ o t ( a j - ~ ) E  lbil do E .  

R e m a r k  4 Because of ( a  x b )  . a = 0, the dissipation part Sdb of the magnetic 
field vanishes exactly for N = 2 in the continuous case. Thus S d b ~  # 0 has to  be 
considered as discretization error - for the equilateral triangle SdbE is of the order 
S Q ~ S @ ~ ' ,  k + +Ic' = 3. 
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