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Abstract 

In recent years, the increasing interest for Thin-Film Transistor (TFTs)  has 
made the modeling of semiconductor devices with localized states increasingly 
important. In transient conditions, the dynamic change of trapped charge must 
be properly accounted for and two continuity equations ought to be considered 
in addition to the standard semiconductor equations. We propose here a novel 
methodology to solve this problem without increasing the number of resulting 
equations, which takes advantage of the locality of the trapped-charge conser- 
vation equations. In this way, the solution is achieved without resorting to 
approximation in the description of the trap-states dynamics. 

1. Introduction 

In recent years increasing attention has been paid to  the design, fabrication and elec- 
trical characterization of amorphous and polycrystalline-silicon thin film transistors, 
which are being used in active-matrix flat-panel displays as addressing devices. Hence 
a growing interest is now devoted to the modeling and simulation of such devices 
which, due to  the  presence of large, energy-distributed, bulk (or grain-boundary) 
states, pose a few challenging simulation problems. In steady-state conditions the 
charge trapped in the  gap states may correctly be  accounted for by redefining the 
generation or recombination rate (e.g., [I]) .  In transient conditions, in order t o  take 
the dynamic variation of trapped charge into account, two more continuity equations 
must be added t o  the system describing the transport in the semiconductor. Such 
additional equations turn out to  be differential in time but purely algebraic in space; 
thanks to  this, a suitable manipulation can be found such that  the  model is solved 
without increasing the  number of equations with respect to  the drift-diffusion one. 
This makes the  implementation easy while maintaining the efficiency of the  drift- 
diffusion scheme. I t  is worth adding that  no approximations in the description of 
the trap-state dynamics are involved here; in fact, opposite to other approaches, no 
particular assumption on the features of the intra-gap transitions is made. 
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2.  Theory and Implementation 

Taking the time dependence of both free and trapped charge into account, the com- 
plete system of device equations in transient conditions turns out to be 

an 
- -  ( l / q )  div J n  = -Un , a p  
a t  

- + ( l / q )  div J p  = - U p ,  
a t  

where n t ,  pt are the concentrations of trapped charge and the remaining symbols 
have the usual meaning. The current densities J n t  , Jpt  associated to the traps are 
set to zero owing to the negligible mobility of trapped carriers. The system (1 ,2 ,3 )  
is made of 5  equations in thk  unknowns cp, n ,  p ,  n l ,  p i .  As anticipated in the 
Introduction. the number of eauations can be reduced to 3: it is shown below that 
this result is' achieved without'approximations by incorporating the two continuity 
equations (3) in a modified expression of the recombination formula. It is worth 
adding that, for the sake of generality, the donor and acceptor sta.tes are treated 
separately; the corresponding concentrations of states are indicated by N t D ,  N I A  . 
Combining ( 2 )  and ( 3 )  and observing that q  d ( n  + nt - p  - p t ) / d t  = d iv ( Jn  + J p )  
one obtains Un - d n t / d t  = U p  - d p t / d t  which, after straightforward manipulation, 
leads to two linear, first-order equations in nt and pt : 

In (4) it is D A  = QnAn + a p A p  + enA t e p p  , DD = anon + a P o p  + enD + e P o ,  while e , ~  , 
epA , e n o  , epD are the emission probab~lities and a n A  = U n ~ U t h  , apA = U p ~ 2 L l h ,  a n D  = 
~ , ~ u t h ,  aPo = U p ~ U t h .  The time discretization of ( 4 ) ,  implemented for lnstance using 
the Backward-Euler method and referring to the ith node, yields 

Eqs. ( 5 )  could also be obtained by first integrating ( 4 )  analytically and then taking 
At small. One sees that nt ; ,  pi; are decoupled from each other; in particular, n ~ : ~ ,  
p ~ , ' ~  in ( 5 )  are the values of the trapped charge calculated and stored at the previous 
time step. Since the probability of direct band-to-band transition is negligibly small, 
the net recombination rate Un is given only by the transition of electrons between the 
conduction band and the gap states; similarly, the net recombination rate U p  is given 
by the transitions of holes between the valence band arid the gap states. It follows 
that Un , U p  can be written as functions of n ,  p ,  nt , pt: 

Up = a p ~  ( p N t o  - p ~ t )  + aPapn t  + e p ~ ( n t  - N ~ A )  - e p ~ p t  . ( 7 )  
Eq. ( 5 )  is replaced into the discrete form of (6 ,7 ) ;  the result is then used to calculate 
the RHS of ( 2 )  at the current iterate. As a consequence, Eqs. ( 1 )  and ( 2 )  thus modified 
are fully equivalent to the original system (1 ,2 ,3)  but, on the other hand, retain the 
same discretization scheme as in the trap-free case. Since no simplifying assumption 
is introduced, all the possible transitions are considered in (1) and ( 2 ) ;  among these, 
in particular, are the intra-gap transitions between acceptor and donor states, which 
a.re seldom considered in the literature. 
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3.  Results 

Numerical simulations have been carried out using a two-dimensional version of the 
device-analysis program HFIELDS,  supplemented with the method described above. 
The turn-off transient of an n-p polycrystalline-silicon diode is shown by way of ex- 
ample. The  diode is biased with a 1 ns linear voltage ramp starting a t  low7 s ,  which 
b r ~ n g s  the anodic voltage from 1 to -3  V. T h e  program accounts for the large number 
of defects in polycrystalline silicon (grain boundaries. intra-grain defects e tc . )  as- 
suming the density of states in the semiconductor proposed in [2]: the states located 
in the lower half of the gap are donor-like while those located in the  upper half are 
acceptor-like. The  energy distribution of each set of donor-like (acceptor-like) states 
is approximated by the sum of two exponential functions. Following [3], the distri- 
hution of states is assumed uniform in space; this is of course irrelevant as far as the 
scheme proposed here is concerned. T h e  current across the two contact,s of the diode 
is shown in Fig. 1 .  The  calculation has been carried out accounting for the displace- 
mellt component of the current: the perfect balance of the currents indicates that  
the charge is correctly conserved by the transient analysis. T h e  corner a t  t = 1 ns 
corresponds to lhe end of the ramp. As a comparison, the same simulation has been 
repeated using the  steady-state expression of pi and n t  in Poisson's equation (1) and 
the corresponding values of l ip, 11, in the  continuity equations ( 2 ) ,  that is, one of the 
cot~lmonly-accepted a.pproximations a t  low trap concentrations; the result is shown 
in k'ig. 2 (on a different t ime scale from Fig. 1) and demonstrates the importance 
of t,aking the dynamics of trapped charge into account. One sees in fact that  the 
currents flowing through the two contacts begin to differ as soon as the voltage drop 
across the diode changes. This means that  the total charge within the device is not 
conserved. The  importance of t rap dynamics is also evident from Fig. 3, where the 
cllrrent is calculated a t  the same contact using the full model (continuous line) and 
the approximation of Fig. 2 (dashed line). T h e  full model exhibits an intermediate 
t.ransient corresponding to the release of the trapped charge, which is instead missing 
in the  approximate model. The  latter,  in fact, exhibits a much sharper peak due to 
the  displncemeni current only. 

The activity of L.  Colalongo and M. Valdinoci has been supported by fellowships 
provided by ST-CO .RI.M .ME, which are gratefully acknowledged. 

R rferences 

[ I ]  M .  Valdinoci, A .  Gnudi, M. Rudan and G. Fortunato, "Analysis of Amorphous 
Silicon Devices," Proc. NUPAD V , pp. 19-22, 1994. 

(21 M .  Shur and C:. IIyun, "New high field-effect mobility regimes of amorphous silicon 
a.lloy thin-film transistor operation," J. Appl. Physics, vol. 59, pp. 2488-2497, 1986. 

[3] G .  Fortunato a.nd P. Migliorato, "Model for the  above-threshold characteristics 
and threshold vo1ta.g~ in polycrystalline silicon transistors" J. Appl. Physics, vol. 
68, pp. 2,463-2465, 1990. 

[ 4 ]  S. M.  Sze, "Physics of Semiconductor Devices", John IViley Sc Sons, 1981. 



I, C'olalongo et al.: An Efficient Numerical Method to Solve the Time-Dependent 

- 1 st contact - 2nd contact 

0 1 e-09 2e-09 
I 

3ei09 
Time (sec) 

Fig. 1 
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