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Abstract 

A new methodology is proposed to include the short range electron-electron 
int,eraction in the Spherical Harmonics Expansion a.pproach to the Boltzmann 
Transport Equation, in the frame of spherical and non-parabolic bands. The 
electron energy distribution is computed in the uniform field case, and large 
corrections in the high-energy tail are observed. 

1. Introduction 

Short-range electron-electron (e-e) scattering is currently thought to have a major 
influence on the high-energy part of the electron population in semiconductor devices. 
Its implementation is therefore almost mandatory in every model of carrier transport 
aimed at  the investigation of typical hot-electron effects such as current multiplication 
factors due to impact ionization and gate oxide injection. It is well known that this 
mechanism has been found difficult to treat even in Monte Carlo (MC) simulators, 
due to the non-linearity of the effect and to the cumbersome integrals required to find 
the scattering rates. 

The Spherical Harmonics Expansion (SHE) scheme [l, 2, 31 has been developed re- 
cently as an alternative to both moment-based solutions of the Boltzmann Transport 
Equation (BTE) and Monte Carlo simulators since it allows a deterministic approxi- 
mate solution of the BTE by reducing the dimension of the argument of the unknown 
carrier density f (r, k) .  

The purpose of this work is that of incorporating the e-e scattering in the program 
described in [I], which deals with the homogeneous case and spherical symmetric 
bands, without introducing any simplifying assumptions on the scattering integral 
calculations other than those intrinsically involved in the SHE method. 

2. The mathematical procedure 

Consider the expression of the e-e scattering operator 

- f (k)  J S(k,  ko, k', kb) f (k.) dko dk'dkb + J S(kl, kb, k ,  k,) f (k l )  f(kb) dk, dk'dkb 

(1) 
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with the scattering mat,rix (Born approximation) 

S (k ,  k,, k', kb) = cee 6(k + ko - k' - kb) S(E + E, - E' - EA) 
1 

( P 2  -t (2) 

where k and ko are the initial states of the two scattering electrons, Lhe corresponding 
primed vectors are the final states, q is defined as q = k - k': and is the inverse 
screening length. The following procedure is adopt,ed: 

1) as requested by the SHE scheme f (a)  is expanded as , fo(o) + f , ( a )  cos(O), where 
O is the angle between a and the reference axis, and the expansion is t run~at~ed 
at the second term; 

2) the inhegation over dkb in the first integral and over dk, in the second integral 
is performed by eliminating the momentum S function; 

3) the dk, integral in t,he first term of ( 1) and the dkb int,egral in the second term 
are computed analytically in their angular parts using the energy 6 function; 

4) in both terms in ( 1 )  the angular part of the integral in dk' is performed analyt- 
i cally ; 

5) the remaining double integrals in dk, dk' for t,he first term, and dk; dk' for the 
second term, are numerically computed. 

The most peculiar part of t,his scheme is point 3) above. Act.ually, the energy 6 
function has usually been eliminated by an integration over the modulus of one of 
the k vectors involved in (1). This choice brings about overwhelming mathernatical 
complications when applied to a band shape other t,ha.n para,bolic, thus forcing a 
choice between using an oversimplified band shape which fails at high energies, and 
a fully numeric integration scheme. We have taken a different st.ance by integrat,ing 
the energy 6 function on the cosine of one of the angles involved in (1). For instance, 
in the first integral in (1) we can write 

where 
y(E(k))  = k2 

and y' stands for the derivative of y with respect to the energy. We proceed in an 
analogous way with the second integral in (1). 

The non-linearities of quadratic type in the unknown density function are treated via 
an iterative method, where the density functions inside the integrals are frozen from 
the previous iteration step. 

We stress the fact that no assumption on the band-shape other than spherical sym- 
metry is required. In fact a set of non-parabolic bands is used in our sirnulations. 

The procedure described above can partially be applied in the frame of the MC 
method. Since MC does not extract the angular dependence of f ,  we are left with 
double integrals in dk, dk' to be performed numerically in the computation of the 
total scattering rate. 
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3. Results 

Figs. 1 and 2 show the results of the homogeneous SHE simulations for two different 
electric fields and various electron densities; P is set equal to the inverse Debye length. 
Even for low densities the significant effect of e-e scattering on the high-energy tail 
of the electron distribution is clearly seen. The effect is much less pronounced at 
electric fields higher than 300 kV/cm and lower than 30 kV/cm, since in this case the 
distribution is closer to  a rnaxwellian shape. 

Consider the expression (1) divided by f ( k ) .  The zero order term of the SHE of 
such term describes the electron balance due to e-e scattering at a given energy, and 
represents an e-e effective scattering rate (ESR). Notice that such ESR is positive if 
the electron in-rate is larger than the electron out-rate. In Fig. 3 the positive part 
of the ESR is plotted for the same electric field and electron densities as for Fig. 1. 
The ESR for energies lower than 0.3 eV, not represented in the figure, is negative, 
reflecting the fact that cold electrons tend to be scattered to more energetic states. 
At larger energies one can note a very rapid growth of the ESR, which in the tail 
becomes comparable with the optical phonon scattering rate. This accounts for the 
major changes exhibited by the tail of the electron distribution in Figs. 1 and 2. It 
should be noticed that the increase of the ESR is related to the deviation of the 
distribution function from the maxwellian shape: a maxwellian distribution would 
result in a zero ESR. 

The accuracy of the SHE method strictly depends on the fact that the coefficients 
of the expansion of the unknown distribution become negligible after a few terms. 
A comparison with MC data, where the e-e scattering was neglected, showed good 
agreement when two terms of the expansion were considered, and an excellent agree- 
ment with three terms [I]. Fig. 4 shows the ratio of the first two terms fo and fi  for 
a 200 kV/cm field. It is apparent that fi looses much of its weight in the high-energy 
region, thus suggesting that the e-e scattering leads to a more spherical distribution. 
This makes us confident about the appropriateness of the truncation a;t the second 
term of the SHE. 
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Figure 1: Electron distribution func- 
tion for a 50 kV/cm electric field and 
various electron concentrations. 
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Figure 3: Short-range e-e effective scat- 
tering rate for various electron concen- 
trations and a 50 kV/cm electric field. 
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Figure 2: Electron distribution func- 
tion for a 200 kV/cm electric field and 
various electron concentrations. 
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Figure 4: The ratio between the first 
two SHE components for various elec- 
tron concentrations and for a 200 
kV/cm electric field compared with the 
ratio obtained without e-e scattering. 




