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Abstract

This paper presents the application of LiSS, the 2D multigrid solver for parabolic
and elliptic differential equations developed by the GMD, to the simulation
of diffusion processes in complex nonplanar structures. A domain-splitting
method is presented. The behaviour of different multigrid cycles applied to
rectangular and curvilinear grids of a trench structure is investigated.

1. Introduction

Multigrid methods have been applied successfully to planar diffusion [1] and oxidation
problems [2]. In our approach we used the general purpose multigrid solver LiSS [3],
implemented a discretization scheme for the diffusion equations and applied it to
several complex structures.

The underlying equations for the Ngq diffusing species are
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with assumed local charge neutrality. The applied diffusion models are fully compat-
ible with those of PROMIS [4]. The discretization of the equations has been done
using a finite volume approach on a nine point stencil, the resulting set of nonlinear
equations is solved by a Newton iteration scheme.

In this approach the whole domain is divided into blocks. For each block a boundary-
fitted logically rectangular grid is generated with a biharmonic generator also using a
fast multigrid algorithm. This technique provides a high geometric flexibility. Thus
it enables the solution of a wide range ol problems and reduces numerical problems
due to distortions.
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2. Multigrid Strategy

Multigrid algorithms have been developed to overcome two disadvantages of iterative
solvers such as SOR, first the so called h-dependent convergence behaviour which
results in slower convergence for finer grids and second the initially good reduction
of both residual and error norms which becomes worse with an increasing number of
iterations.

A multigrid solver mainly consists of four parts: the smoothing, the restriction, the
injection method, and finally the cycle type. The smoother makes the error a smooth
function over the whole domain. Relaxation methods are used for this purpose,
because they damp high-frequent residual-“modes” very efficiently. By means of
the restriction method the residuals are transferred from one level (or grid) to the
next coarser level. The prolongation method defines how to transfer the residuals from
one level to the next finer level. Finally the cycle type defines how many smoothing

F-Cycle V-Cycle W-Cycle

Figure 1: Multigrid Cycle-Types

steps should be performed on each level and the sequence of the different levels as
shown in Fig. 1. For example a V(vgoun, Vup) cycle performs v4o,n smoothing steps
before restricting to the next coarser level and v,, smoothing steps after prolongation
from the coarser level. The proper choice of these components has great impact to

the efficiency of the algorithm.

3. A Trench Problem

A practical application is a "simple” trench as shown in Fig. 2 (boron background
doping, arsenic source/drain implant with a 7¢ tilt angle). In this case the domain is
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Figure 2: The trench geometry with a block structured grid (a) and a conventional
grid (b) (‘The triangles are an effect of the visualization of non-orthoproduct grids)
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split into three nearly rectangular blocks where a grid is generated separately for each
of them. In regions near to the boundaries, where high dopant gradients occur, the
grids have been refined. From Fig. 2a the advantage of block-splitting, mentioned
in section 1 (distortion), becomes obvious. This becomes even more important when
treating more complicated structures such as undercuts.

The multigrid method used for this example consists of the following components.
As smoother a Gauss-Seidel relaxation has been applied. Restriction was done by
"full weighting”, which uses the local average of the residuals on the finer level. The
prolongation is a simple linear interpolation. The cycle is of V-type with different
parameters Vgown and vy, respectively. The table of Fig. 3 shows the residual history,
the runtimes and the convergence rates of various combinations of cycle parameters.
Note that for higher values of vyoun + 14y the convergence is faster, but it should be
noted that the computational effort rises, too. As these results show, the multigrid-
cylce takes about half the computation time of a single-grid cycle. The experiments
showed that a V(2,1)-Cycle provides excellent results for a wide range of problems.
For a small number of cycles the convergence rate of the single-grid cycle is in the same
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Figure 3: Residual reduction of a single-grid solver, multigrid solver with various
cycles, their runtimes and their convergence rates

range as the convergence rate of a multigrid cycle (see Fig. 3 for the first 3 iterations).
After a few iterations the high frequent residual-modes have been smoothed and the
remaining residual is dominated by low—frequent modes. For these low-frequent modes
single-grid methods are very inefficient as I'ig. 3 shows. In contrast to the single-grid
method the multigrid-method does not show this effect. Although the computational
effort, of a multigrid cylce is a multiple (almost twice as much) of the effort a single-
grid method (depending on the cycle-parameters vyoyn,vyp), the multigrid method is
significantly faster because of the constant and fast convergence for all cycles.

These tests have been performed with both types of grids shown in Fig. 2. The run-
times for the same number of unknowns are approximately the same for both grid
types. Against the expectations the curvilinear grid from Iig. 2b did not lead to
convergence or accuracy problems. However, the advantage (with respect to compu-
tation time) ol the blockstructured grid is obvious since the blocks can be handled in
parallel only exchanging information at their coinmon boundaries.

The physical results of the computation are presented in Fig. 4. The diffusion was
performed at 1000°C for 20 minutes. The results for the one-dimensional part on
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Figure 4: Final dopant distribution in the trench

the right side of the trench have been compared with a PROMIS simulation giving
excellent agreement. The differences betwecen the solutions were caused only by the
different time step sizes, this means by the time discretization error.

4. Conclusion

This work has been an investigation about the suitability of the general purpose
solver LiSS for the simulation of diffusion problems. The results obtained fit well
with theorectical predictions. Convergence properties of the multigrid methods are
very good, assuming that suitable multigrid components are in use.
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