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Abstract 

We present an implementation of the energy balance equations in two dimen- 
sional device simulators which is based on a definite positive formulation of the 
ohmic energy sources for the carriers. 

1. Introduction 

The correct numerical treatment of the energy balance equations remains still a topic 
of active research. This is because naive discretizations of these equations lead to very 
unstable algorithms. Sometimes it may be very useful to return to the physical con- 
tents of the equations and derive a discretization prescription which is based on the 
underlying physics of the problem. A nice example which illustrates this statement 
is the Scharfetter-Gummel method for current discretization, which expresses charge 
conservation along a flux line segment. Starting from the physical meaning of the 
variables in the energy balance equations, we will derive a discretization prescription 
for them. Remarkably enough, we find a formulation of the energy balance equa- 
tions which is well suited for considerations concerning the definiteness of the energy 
sources and sinks. The definite signs of these sources and sinks are very helpful in the 
construction of the Newton matrices, since the robustness improves considerably, if 
the linear solvers deal with matrices, which are semi-definite. [I] In this paper we will 
reformulate the energy balance equations in such a way that (1) the physical meaning 
of the variables is respected in the discretization procedure and (2) it becomes very 
straightforward to satisfy the condition that the Newton matrix is semi-definite. 

2. The Hydrodynamic Model 

The energy balance equations in steady state operation are (see Forghieri et al. [2]) 

where c = p for holes and c = n for electrons. The carrier energies are 
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For the currents we use the thermodynamic relations 

The 'energy' flux vectors are 

The convective term in the energy flux vector has been neglected. This is motivated 
by the fact that we only take into account fluxes which are linear dependent of the 
driving mechanisms, , GT and e c .  - 
The vector S can not be considered as the correct energy flux vector. This is because 
the ~ h ~ s i c a l  energy flux vector is given by 

Each term has a clear physical intepretation. The first term corresponds to heat 
conduction, i.e. energy transport without matter transport, whereas the second term 
represents the energy transport due to matter transport. As a consequence, the 
following expression, 

sk - e.(s' - G h V s )  = - v . ( T ~ )  
Q 

must be considered as a heat source in the energy balance equation. Indeed, since 
f = scii, we have 

+.(TI') = f . + ~  + s ~ i i . G c  + s ~ c + . i i  ( 7 )  - - 
and the energy balance equations become with using F = & 

The four energy sources/sinks have a straightforward physical intepretation. The first 
term. 

7 -  p c ,  CCUT = -.F = -F 
4  4  

(9) 

corresponds to the work performed by the driving force. Note that this term is positive 
de5nite. Any numerical implementation should respect this property . In particular, 
in strong inversion layers, the numerical evaluation of F2 is much less ambiguous 
than the evaluation of 2 . f  . Furthermore: the quadratic appearance of this ohmic 
heat source term is very suitable for analysis of the signs of its contribution to the 
Newton-Raphson matrix. Indeed, it suffices t,o evaluat,e the signs of J;, along the 
links. 
The last term, 

C""" = -- IcT cG .ii 
4  

(10) 

corresponds to a change in energy density due to a compression of the carriers. 

The refor~nulation with CCuT is also very instructive if we consider it together with 
Ciatt .  Since v' = s p F ,  we obtain 

I m p  pc 3 T - T *  CCuT + Ciatt = (1 - --)-F - -kc- 
2 4 ~ w  4  2 Tw 
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There cannot be relaxed more kinetic energy to the lattice than the driving force can 
perform work, therefore we obtain the following consistency condition 

If this condition ,rP 5 22r,, is not fulfilled, we will obtain carrier cooling. This 
phenomenon is not observed in Monte Carlo simulations. In a recent paper of Gardner 
[3], in which he compares the hydrodynamic model with Monte Carlo computations, 
this condition is indeed satisfied. 

3. Scharfetter-Gummel fluxes. 

The Scharfetter-Gummel method expresses the fluxes Dij ,  Jij and Sij as functions of 
the endpoint variables: $;, ci, Ti, $~ j ,  cj, Tj. Since the fluxes are the linear responses 
to the driving mechanisms, we propose a decoupling which is based on this physical 
approximation, i.e. at each link of the mesh, the coefficients in front of the forces are 
taken constant. Then we find the following Scharfetter-Gummel fluxes for the links: 

and 
Sij h = S [ E ~ ; , ]  ~ i j  h + [K] (Ti B(Y)  - Ti B(- Y)) 

4 
(14) 

where B is the Bernoulli function. Furthermore we set T = (Ti + Tj)/2 and A$ = 
1+5j - I+5;, etc. and 

4. Applications 

In order to illustrate the proposed scheme for hydrodynamical modeling we have 
simulated a 0 . 5 ~  gate MOSFET. The structures is depicted in Fig. 1 and corresponds 
to a conventional LDD. Spacers are included. The following dimensions are used: 
oxide thickness: 10 nm, poly thickness: 350 nm, spacer width: 250 nm, contact hole: 
0.7 p, gate length: 0.5 p, silicide thickness: 50 nm, contact-spacer gap: 0.04 p ,  device 
height: 2 p. 

The silicides at the source and the drain are mimiced by added a very high dopant 
concentration to this region such that the resistivity becomes low. The polysilicon at 
the gate is represented by highly doped Silicon material. 

In Fig. 2 the doping concentrations for the nmos is presented, whereas Fig. 3 shows 
the electron temperature distribution for IVDsl = 2.5V and IVG/ = 2.OV. In Fig.4 
the IV characteristics are shown for the drift-diffusion model and the hydrodynamic 
model. 

We observe that the hydrodynamic model gives rise to lower drain currents than 
the drift-diffusion model. The simulations confirm the experimental observation that 
there are also hotspots located at the source ofthe transistor. 
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Fig.1: LDD MOS device lay-out. 

Fig.3: Electron temperature in  nrnos. 
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Fig.2: Log. of doping concentration. "drain ["I 
Fig.4: IV characteristic for nrnos. 




